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ABSTRACT

The utility of a computationally simple yer
cryptologically zrobust 1rule for generating pseudorandom
birstreams cannot be overstated. In most applications we
strive to detect and avoid chaotic behavior; here we embrace
a particular chaotic discrete dynamical system to exploit its
use as a driver for a pseudorandom number generatcor. The map
from the Hénon attractor to the binary domain {0,1} proposed
by Forré/Heyman has been tested cryptologically and
statistically with mixed results. In this thesis we
mathematically evaluate this symbolic dynamics scheme and
investigate more rigorously 1its utility as a pseudorandcm
number generator. Specifically, we demonstrate how the

property of being one-to-one holds, but that the property of

being onto does not. Accesion For
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I. INTRODUCTION

A. HENON'S DISCRETE DYNAMICAL SYSTEM
Michel Hénon (1931- ) was a French mathematician and

astronomer who was 1nterested i1n mcedeling astronomical

[0}

beravior. Hénon learned how the meteorologist-mathematician
Edward N. Lorenz (1917- ) had developed a three-dimensional
artractor to model the complicated dynamics of thermal
convection. An attractor 1s characterized by the following

definition.

DEFINITION: Let V be a subset of R" and F: V =5 R7, where
m=1,2,3. Let A be a subset of V. Then A is an attractor cf
Fo1f:
1. A 1s a closed invariant subset of V under F. The se:
A in R 1s invariant under F: V> R" if F(A) ¢ A.
11. There 1is a neighborhood U of A such that if v is in U,
F'iv} &2 A as n = ,where F' denotes the n-fold composition of

F [Ref . 1:p.147,200].

]
jo)
D

Lorenz attractor 1s generated by a system of three
differential equations and relies upon integration which dces
not lend itself to timely and accurate computer calculations.
[Ref.2] Hénon sought to build a simple discrete dynamical

system that would retain the qualitative properties of the



continuous Lorenz system. His goal was achieved through study

i)
[(¥9)
[

of the Poincaré section of the Lorenz equations. [Pe
Thus, the Hénon attractor 1s, O some extent, a Lwe-
dimensional version of the Lorenz attractor. The Hénon map :is
the following quadratic recurrence which maps the Euclidean

piane into itself. [Ref.7]

H : RP 3 R*
X... =1 - ax® + y. D
Y... = bx. (1.2

-

Each polnt in R- has a unique image and preimage under H. The
same 1s true of the inverse of the Hénon map. The constants
a and b are real parameters. We can write the map as a
transformation in the following form:

Hix,y) = (1 - ax.- + y., bx.).

Understanding the dynamics of the map 1s easier if we

decompose it into the following independent transformations:

H(x,y) = (x,y + 1 - ax’)
H (x,¥y) = (bx,y)
H.(x,¥y) = (y,x)
such that
H(x,y) = H.(H. (H.(x,¥))).
2
® [ L J ® L ®
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Respectively the transformations cause bending, contraction
(fcr | b |<l), and a reflection. [Ref.S:p.662] This stretching
and fclding are analogous to the kneading or mixing common to
chaotic systems.

The parameters (a,b) control whether the system forms an
interesting attractor with apparent aperiodicity or an
uninteresting attractor of low period. Reportedly, Hénon
checse his classical parameters (a,b) = (1.4,0.3) because they
gave the "nicest and strangest® picture. Figure 1 shows the
computer representation of the Hénon attractor for

(x,,y.)={(0,0) using 2000 points.

0.4

0.3p

02}

0.1p

y-uxis
=3
L4

02t

Q.3

04 . R N
0-1.5 -1 0.5 0 03 t 1.5

x-axis

FPigure 1 Hénon attractor

In keeping with our definition, the computer representation is

generally unaltered by the choice of (x,,y,). This is true as




:ong as the values tend to the attracror and the first, sayv,
130 irterates are ignored. The first points generated by the
map may not be close to the artracrtor, but the generated

coint3 get closer and closer o the 1nvari:ant set.

TNITIDN: Let x belong to the domain of a function £; x &

n

th

-7 period n 1f f(x' = x, and i1s of prime period n :

%, f % ,fixi,...,f "(x) are distinct. If x has peric: n -hen
~r= orbit {x,f(x),f({x),...,f ix)} 1s a periodic orbit
Ref . l:p.21]. If n =1, then x 15 said to be a fixed point.

The merit of Hénon’s choize of (a,b! parameters can kce
:nd by observaticn of the respective bifurcation diagrams.
2 bifurcation diagram gives us 1informat:on regarding the
cerisdic and nonperiodic orbits cf a map as a par.mater s

alcered. In a bifurcation Jdiagram, the wver-:i7z. ax.:s

represen-s iterates ¢f the variable x as a parameter 13 varied

[

on the horizontal axis. [Ref.i:p.52] If we take a ver=.za

silce at a particular parameter we get an 1dex I -“re

t

astractor’s structure for that parameter. In Figure
rarameter 1s held fixed at 9.2 and the a-gparamerter 13 ar.ei

from .2 to 1.42.
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Figure 2 Bifurcation Diagram: b-parameter fixed
Notice <hat from about a = 0.1 to a = 0.4 we have a point o
attraczor, that is, the entire attractor consists of a single
f:xed point. From about a = 0.4 toc a = 0.9 we have a period-
“wO attractor; tha: 1s, the attractor is made up of twe
points. Tr.ese period-doubling bifurcations persist as the
parameter a 1s 1increased, until a «critical value of
approximately a = 1.1 is reached, where we er.ter the chaoct:c
regime. Notice that Hénon'’'s classical a-parameter 1.4 lies in
such an area of wildly complicated dynamics, sometimas called
a chaotic band {(Ref.6].
In Figure 3 the a-parameter is held fixed at 1.4 and the
b-parameter is varied from 0.0 o 0.32. Again, Hénon’'s b-
5
° ° ° L) ® ® o




value 0.3 not surprisingly lies in an area of chaotic

activity.

x orbits

P
I
|
. |
o] Q.05 a.1 3.15 0.2 0.25 0.3 0.35
b-parameter

Figure 3 Bifurcation Diagram: a-parameter fixed

B. NATURE AND STRUCTURE OF THE HENON ATTRACTOR

- =
- -

pa-

Because the Hénon transformation 1is quadratic,
pcssible that even relatively small (x y,) values can produce
an 1iterated sequence, or orbit, that escapes to infinity.
[Ref.4:p.664] The Hénon attractor has an associated basin of
attraction of points (found numerically) which in forward
iteration are drawn to the attractor. A point in the basin of

attraction thus tends to the invariant set. The Hénon

attractor also has an assoclated area known as the trapping




region. The trapping region is a quadrilateral wi tne

cr
v
v
Ve
o

basin of attraction defined by the vertices:

s
"

{-1.33,0.42) B

{1.32,0.133)

)
H

(1.245,-0.14) D (-1.06,-0.5)

If {x.,¥y ) 1s chosen from this region, all subsequent iterates
ARR

will remain in the region [Ref.S5:p.664)}; hence the trapping

region 1s invariant. Let

H, = Hénon attractor
B, = Basin of attraction

TR = Trapping region.

Then, we have that

H, € TR C B,.
This relationship is shown explicitly (excluding the trapping
region) in Figure 4; the shaded region 1is the basin of

acttraction.

-



Figure 4 Basin of attraction (shaded
region) and Hénon attractor. This
figure is from reference 5, p.665.

Therefore,
i. 1f (x,,¥,) € TR, then (x,,y,) € TR for all n > 0.
11, if (x,,y,) € B, but (x,,y,) ¢ TR, then (x,,y.) may not
belong to TR for n < N. However, from the description
of the basin of attraction we know that for all n

sufficiently large, (x,.y.) € TR.

The b-parameter, 0.3, is in the dissipative term of the
relation. The Jacobian of the Hénon transformation is (-b),
and hence the map is dissipative when |b| < 1. [Ref.l:p.168].

Therefore, should we iterate the entire trapping region under



the transformation for b = 0.3, this area would shrink and in
the limit tend to zero. The Hénon attractor thus has zerc

area. Shown symbolically,

H, = lim _ . H (TR)

or

Hy = N_."H (TR).

In fact, any point belonging to the trapping region can be
iterated to construct a dense orbit on H,, except the periczdic
points which are countable and hence have Lebesgue measure
zero. The visual result, in the limit, is the same for any
initial condition (less a finite number of initial iteration

£O assure close proximity to the attractor). Two different
points will generate different sequences but the limit sert,
under the above qualification, will appear to be the same
visually. Furthermore, in general, there is no correlaticn
between the trajectories of two different initial points,
except possibly in the first relatively few iteraticns shculd
the 1nitial points be neighbors. (We disregard here <he

instance where, say, trajectory 1 has common points with

trajectory 2 but for different iterates. In this case the

orbits are shifted versions of one another.) This lack cf

correlation 1s related to sensitive dependence on initial

conditions.

A

x

o




The Hénon equations (1.1) and (1.2) (with the classical
parameters (a,b)=(1.4.0.3)) may be written in one variable as:
Xop = 1 - 1.4x.2 + 0.3x,,. (1.3)
There are two fixed point solutions to the recurrence, where
XKooy = X, = X,y
This occurs when (x,y) = (.6314...,.189%4...) (FP2) and (x,y)
= (-1.1314..., -.3393...) (FPl). The fixed points, trapping

region and Hénon attractor appear in Figure 5.

/!.ongl tudinal Axis

0.4

02

02

Transverse Axis

-1 035 0 03 1

Pigure 5 Fixed points of Henon attractor, trapping
region and eigenvectors associated with FP2

The left fixed point FPl is repelling and is noticeably not on
the attractor or even within the trapping region. The

remaining fixed point FP2 is a sdaddle point and belongs to the
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attractor. The Jacobian matrix at FP2 has associated
eigenvalues A, and A,, with slopes p, and p, for the respective

eigenvectors:

A, = 0.1559... D, 1.9237. ..

-0.1559...

A, = -1.9237... o
Figure S5 alsc shows us the strong local effect of the
eigenvalues at FP2. Longitudinal spreading is due to A,.
Since |A,| is greater than 1, points are forced outward from
FP2 along the longitudinal axis forming a roughly broken line,
at least locally. The eigenvalue A, causes a transverse
contraction of points. Figure 6 shows a detail of this
structure. The dense transverse structure 1s revealed through

local magnification in Figure 7.

035

03

02s

02F

0.15

0.1

. n e Dk

0.4 0.45 0.5 0.55 0.6 0.05 0.7 0.7 08

Figure 6 Magnification of area around fixed point

11

°
¢
)

®
¥

°

™

°o

) ®

o

°

™

°

°



 sdenssstin

0.2

021

0.19

0.18

0.17

01 . . . R N
8.6 0.61 0.62 0.63 0.64 0.65

Figure 7 Detail of dense transverse structure around
fixed point

As magnification is increased and more points are plotted the
attractor begins to take on the appearance of distinct bands
with a cross-section that has the nature of a one-dimensional
Cantor set ~- a totally disconnected set of points with
patterns that persist on infinitely small scales. This is the
self-similar nature of the attractor. Thus, at least on a
level local to FP2 we observe a fractal quality that is common

in chaotic attractors [(Ref.S5:p.670].

C. CHAOS
Because the field of chaos is in its relative infancy not

all terms are universal. The most mathematically rigorous and

12

@

&




widely accepted definition of chaos for discrete dynamical

systems 1s the following:

DEFINITION: Let S be a set. A mapping f: S— S is said to be
chaotic on S if

1. f has sensitive dependence on initial conditions,

o

f is topologically transitive,

3. the set cf periodic points is dense in S. [Ref.8:p.50]

we will now elaborate on each of these concepts 1n a bit more
detail starting with sensitive dependence on 1initial

conditions.

DEFINITION: A mapping f: S 5 S has sensitive dependence on
initial conditions if at every x € S, there exists an € > O
such that for each & > 0, there is a y in S and a positive

integer n such that

Ix-y I< & and 1£7(x) - £ (y)l> €. Ref.l:p.84]

Based on empirical evidence, the Hénon attractor is widely

believed to possess sensitive dependence on initial

O

onditions. [Ref.7] The stretch-and-fcld phenomenon mentioned
previously ensures that close points will not be neighbors

after a finite number of iterations. Figure 8 shows a plot of

13
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the Euclidean distance between the orbits of two 1initial

conditions.
i v -
]
|
2=
|
[V}
Q
a"a‘-
bl
a
- 'r
2 |
(5] |
3 |
[ I 1
o.5- R
. 7
o) 150 2060 250 300 350 4CO
Iteration

Pigure 8 Sensitive dependence on initial conditions

The two pecints are the origin (0,0) and a peint (0,&’) where
€' is just within machine epsilon, that is €' < €. Machine
epsilon in this case is approximately 2.22 x 10°*°*. Within
seventy iterations the orbits are completely different.

Cf course, since both initial conditions belong to the
trapping region the maximum difference between the orbits is
bounded by the extremes of the trapping region. Although this
1s only the first of three criteria for chaos some accept the
dynamics on the Hénon attractor as chaotic based on sensitive

dependence alone. [Ref.4:p.671] Sensitive dependence brings

14




out an 1lnteresting paradox. Globally we have an attractor
with respect to the basin of attraction; however, locally for
the points of the invariant set, the orbit jumps around the
attractor chaotically, seemingly repelled by each point.
Topological transitivity, also called mixing, ensures that

rhe set on which the dynamical system is defined cannot be

i

divided into two disicint open sets which do not “interact®

ior mcre precisely, are invariant) under the system.

DEFINITION: A mapping f: $— S is topologically transitive if
for any pair of open sets U, V, which are subsets of S, there

exists k > C such that £(U) NV # J. [Ref.8:p.43]

Essentially, for a system to be topologically transitive
it must be true that for any two arbitrarily small regions U
and Vv (where U and V are not points) we can find an init:ial
point x- in U whose orbit will enter the other regicn at some
iteration. [Ref.5:p.554]

For a system to possess dense periodic points means that
in an arbitrarily small neighborhood of any point belonging to
the attractor there must be a periodic point. This condition
suggests paradoxically that one of the qualities for "chaocs"
is a high degree of "order".

Although there exists vast numerical evidence to suppor-
the claim that Hénon'‘s dynamical system possesses all three cf

rhese criteria for chaos, none of the criteria have been

15




rigorously proven. [Ref.5:p.671] [(Ref.19:p.152] To keep this
in perspective, it must be acknowledged that our definiticn 1s
more stringent than proving the existence of a dense orhit and
a positive Lyapunov exponent, a commonly accepted alternat:ve

definition. [Ref.l4]

D. THE SHADOWING LEMMA - TRUSTING THE COMPUTER
The study of theoretical chaotic dynamical systems would

be extremely handicapped if we could not trust ocur computer

[ )
n

representations of these systems. Because a compurer

limited in terms of its accuracy by rounding errcr, 1t

4o
Ui

appropriate for us to ask whether our computer calculaticr

b
w

th
(Ve

an approximation of some true orbit of the system. [Re ]
The Shadowing Lemma shows that we can trust the computer

image.

DEFINITION 1: The map f:R"—3 R is a class C® map 1if 1- 1s ¢
times continuously differentiable with respect to x.,.x, ...,

for some p, 1 £ p S£o. A mapping f:R"— R" 1is class C' if each
component £ of f, (where 1i=1,...,m) 1s p times continuous.y

differentiable [Ref.l10:p.1-2].

n

DEFINITION 2: A mapping f:R"—> R™ is a dAiffeomorphism :f it :
one-to-one, onto "and both f and f°' are continucusly
differentiable maps; f is a C*-diffeomorphism if both £ and £

are C* maps [Ref.10:p.2].

16



DEFINITION 3: Let f: R- 9 R be a diffeomcrphism. A set A :s

said to ke a hyperbolic set under f 1f:

1. for all points p belonging to A, there 1s a set cf
lines E‘(p! and E-(p) 1n the tangent plane at p which are
greserved by the Jacobian cf £ ac p. (E'(p) 1s called rre

starle line and E-(p) 1s cailed the unstable line!).

2. E:p) and E(p) vary continuously with p.

[}

O
(2]

4. There is a constant A>l such that |J(p) {v)|2A]|v|

(¢S]
(e
|

all veE(p) ard |J ' (p)(v)|2A|v]|for all veE*(p). [(Ref.&:p.2
237

Suppcose f satisfies the three previous definitions for some p
with an associated hyperbolic invariant set A. The true
{forward} orpbit of a point z, under the map f is given by the
sequence {z.}-" such that z, = f-(z.). [Ref.10:p.251] Due to
finite precision the exact calculation of the seguence
{f(z1};" 1is impossibie. Because we are unable to cbey the
function z = f'(z.) in order to find an exact orbit, let us
instead define a pseudo-orbit or more specifically €-pseudo-

orbic.

DEFINITION 4: An e-pseudo-orbit is a sequence cf points,

{y }-» , such that yv. € A, and

17

%




where d 1s a metric on R*. [Ref.10:p.352] The €-pseudo-orbit

. L]
is pictured at the top of Figure 9.
&
o
Figure 9 t£-Pseudo-orbit and d-Shadow
Notice that we adjust each iterate by dropring £(y,) and then
choosing y,., to be within & of f(y,). We can see that the
term pseudo-orbit, therefore, is appropriate. One final
definition is necessary for us to understand the Shadowing
Lemma .
18
® ® o [ ) ® L) o



DEFINITIIN 5: Suppose {x }.* 1s an actual orbiz, rthat 13, x€A
and x = f(xi; {x )}~ 1is a d-shadow of the pseudo-crbit v !}~

dix ,y) < 9d.
The &-shadow of the pseudo-orbit 1s shown at the bor-om of

Figura 9. The Shadowing Lemma assures us that witnin &

3

arbitrarily small distance, 8, of an €-pseudo-urfit there

.
b
i

an exact orbit. Stated succinctly:

Shadowing Lemma: If Definition 2 holds for the map £ and A

'
n

a hyperbolic invariant set on R", then for every 8 > ( there
15 an € > 0 such that every g-pseudo-orbiz in A s 0
shadowed by the actual orbit of some point x € A.
(Ref.10:p.352:
2lrthough the Shadowing Lemma is very powerful, 1t dces n
explicitly speak to us about the computed orbift, ca.l 17 w
for which we hope to find to an exa:tt orbit nearby.

Our computed orbit, w., is not the true orbit {f v 1} 7 we
are lucking for; however, let us show more clearly why 17T is
an acceptable approximaticn of a true orbit in the system.
[Ref.9:p.251] The sequence of computed values, w
Hércn map for some 1initial condition y 1s actuall

fleoating point representation of f(w .. ) or,

18
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h

w =Y
w. = fl(f(y,))
w.o = fl(f(w.))
Twe = EL(E(w))
w... = f1(f(w.))
Recall from our definition that f(y.) is within € of v . . In

order for us to show that a computed orbit, w., can be
arbitrarily close to an exact orbit, x., which d-shadows the
orbit, y , we must first make an important assumpticn. we
assume that at each i1teration the error between the computed
value cf t(y ) and the exact value of f(y ) is bounded. Tnat
ls,

diw,fly .)) < €& such that € < €.

where €. 1s some function of the machine precision which
bounds the error for all iterations. Figure 10 shows a
representative configuration of the orbits involved. By the

Shadowing Lemrma d(y ,x ) < 0.

20



Xiel

an

exact orbit,

Xi.

Pigure 10 Pseudo-orbit, exact orbit in d-shadow, and
computed orbit

Using the triangle inequality it follows that

diw,, x,) S d(x;,£(y,.;)) + d(w,, fly...)).
But,

dix,, f(y..,)) € dix,,y,) + dly.,.E(y...)).
Therefore,

diw,, xS d(x,,y,) + dly..f(y...)) + dw, , Eiy ..})
or

d(w,,x,)s o + € + €
If we let 8 =8 + € + €, then it follows that, for every &'>e,
we can calculate a computed orbit, w,, that is &‘'-shadowed by

In this way we see that the existence of

our computed orbit in the &8’-shadow of an exact orbit actually

depends on the precision of the machine in use.
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According to a theorem 1in a recent papec (Ref.l1l3),
specific criteria have been developed under which we are
assured that in the shadow of a computed orbit there will
always exist an exact orbit within a calculable tolerance.
The authors accepted that the Hénon map and the Heénon
attractor satisfied Definitions 1 and 2 previously mentioned.
The accuracy of the numerically computed orbits which the
theorem measures applies to non-hyperbolic sets as well as
hyperbolic sets so compliance to Definition 3 may be relaxed
[Ref.17]. Computations applying the theorem in reference 15
were performed in Microsoft Quickbasic using a double
precision IBM system computer. The value of € (the distance
between y and f(y .) which defines the pseudo-orbit) was held
ro approximately 2%, The authors applied the theorem and it

was discovered that even after 372,000 iterations there 1s a

true orbit which differs by at most 2" (approximately
1.8626x10°"") from the computed orbit generated by the Hénon
map.

Based on the dense structure and infinite detail of the
Hénon attractor it is intuitively reasonable that in the fcocs-
print of the computed orbit there exists an exact orbir.
Thus, the Shadowing Lemma assures us that the statistical

evidence measured under computer analysis is significant.
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II. PSEUDORANDOMNESS FROM CHAOS

A. LINKING CHAOS TO THE BINARY DOMAIN

Symbolic dynamics 1s a technique that can be used to
relate the dynamics of a particular system on a metric space
to another system on symbol space. Symbolic dynamics allows
us to analyze a system by studying its effect on symbol space.
The principal idea 1s that if two systems are topologically

cenjugate, then their dynamics are eQquivalent.

DEFINITICON: Suppose we have two maps: f: U= U and g: Vv V.
The functions f and g are topologically conjugate if there
exists a homeomorphism h:U—V such that ho f = g o h. The
function h is'a homeomorphism if:
i. h is one-tc-one
CEZFINITION: Suppose f is a function from U to V; f is
one-to-one if and only if for all elements u. and u-€U,
f(u.) = f£(u.) implies u, = u,.
1i. h is onto
DEFINITION: Suppose £ is a function from U to V; f is
onto if and only if for any element v in V there
exists an element u in U such that v = f(u).
1ii. h is continuous

iv. h is continuous.
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Criterion iv is actually implied by criteria i, 1ii, and iii.
Furthermore, 1if f 1s topologically conjugate to g then it
follows that g is topologically conjugate to f.

Finding a homeomorphism that forms a topological conjugacy
berween two maps can be extremely difficult. However, this
does not diminish the power of the relation. A topological
conjugacy, as we mentioned, relates the dynamics of two
systems completely. [Ref.20:p.27] For example, 1if the
function £, from our definition, has a period-two cycle {p,q},
then (hip) , hig)} is a per:izd-twe cycle for the function g In
this way, all orbits for the function f have corresponding
crbits for the function g. Furthermore, if f has a dense set
of periodic points in U, then the same is true for g in V.
[Ref.5:p.571] Following this reasoning, if 1t can be shown
that the dynamics of map f exhibit the three characteristics
of chaos previously mentioned, and there exists a topological
cenjugacy between f and g, then map g will also be chaotic.
[Ref.20:p.28]

Can we harness this chaotic energy that exists in one
system and through an effective symbolic dynamics transfer it
to another under a homeomorphism to achieve a useful result?
This is precisely the issue raised in Réjane Forré'’'s treatise
of November 1990. [Ref.l1l2] Forré hoped to apply a presumably
chaotic discrete dynamical system to the field cof
cryptography. Specifizally, she attempted to devise a scheme

to generate nearly random sequences of zeros and ones whic
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could be used for coding purposes. (Any numbers generated by
a deterministic rule cannot be truly random and are,
therefore, termed pseudorandom.) Forré's proposed symbolic
dynamics relates the apparent chaotic dynamics of an orbit on

the Hénon map to binary codespace by

h:H, - Y .

Here, A represents the attractor associated with the mapping
f (see definition Chapter I. section A. p.l); in particular,
f is the Hénon map. The set ),, also called symbol space or
codespace, represents the collection of all infinite sequences
of zercs and ones. Any chaotic behavior exhibited in the
Hénon map transferred to %, would be observed as a
pseudorandom stream of zeros and cnes in X.. Forré's symbeclic
dynamics 1s based solely on the horizontal component, x., of

the iterates of the Hénon map. The elements of such a binary

sequence {S },.." in X. are defined as follows:

I}
O

if x, € X4-, then S,

i1f x, > Xu., then S,

0]
[y

for a string of length N where XxX,. represents a dynamic
median. {(The dynamic median ensures that on the average the

trajectory will fall on each side of the median for half the
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iterates; this median has been more carefully calculated as
Xuwe-=.4098 1in reference 13). In order to clarify the
computational process involved in Forré’'s symbolic dynamics
the following example is furnished. Let us arbitrarily choose
a particular (x,,y.) value from the trapping region, say
(x ,y ) = (1,0). Since x. > X, the binary sequence element
cocrresponding to (x.,,y.} is S. = 1. Using equations (3.1 and

(3.2) below we calculate (x,,y.) as follows:

X, = 1 - 1.4 X7 + y. (3.1)
Ynol = '3xn (32)
x, =1 -1.4(1)" + 0 = ~.4 .
y.: = .3(1) = .3

Because X, £ X, the next binary sequence element,
corresponding to (X,,y,), is S, = 0. In this way we can

calculate the entire forward sequence of binary elements:

S = {S;,5,,5,,8,...} = {1,0,1,0,...}.

Although Forré’s calculated median was inaccurate (she
used a dynamic median X, = .39912) her results showed that
under the cryptographic properties of linear complexity and
jump complexity the bitstreams were wholly indiscernible from

truly random sequences. However, she concluded that a third
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property, the n-tuple distribution, was 1inconsistent with
rruly random sequences and that this rendered the unaltered

scheme unsuitable as a pseudorandom number generator.

B. RECENT STUDY OF FORRE'S SYMBOLIC DYNAMICS

Forré drew attention to the poor n-tuple characteristics
cf her unaltered symbolic dynamics. In a more recent study
{Ref.13] Heyman refined the calculation of the median, X,
and rigorcusly investigated the n-tuple property, as well as
three other cryptographic properties, to evaluate the
pseudorandom number generator. It was concluded that the n-
tuple or runs property was a minor detractor and that the
proposed use of the scheme as a cryptographic pseudorandom
number generator was sound and effective. The runs property
was mentioned by both Forré and Heyman, but the authors’
conclusions with regard to the significance ¢f the property
were markedly different. Under these mixed results, the runs
anomaly demands further investigation.

Due to the disparate conclusions drawn by Forré an
Heyman, 1t 1s a natural next step to evaluate the symbolic
dynamics under more mathematically rigorous criteria in order
to determine more objectively and conclusively whether the
scheme is an effective pseudorandom number generator. Because
the chaotic behavior on the attractor and certainly the
symbclic dynamics scheme itself are mathematical concepts, we

evaluate the pseudorandom number generator mathematically.
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This 1s certalnly necessary since the previous papers were not
analytical and gave only a cursory mention of the theory of
chaos. Primarily, our task is to collect evidence to prove or

disprove that this scheme,

h:HA—)Zv_

gives a homeomorphism. Our secondary objective 1s to explain
completely the runs anomaly in mathematical terms. Thus,
based on the definition of a homeomorphism we will provide
experimental evidence to support the one-to-one property.
Furthermore, we will provide analytic proof that the presumed
homeomorphism is not onto for the proposed pseudorandom number

generator.
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I1I. EXPERIMENTAL EVIDENCE FOR ONE-TO-ONE

A. A COMPUTER PARADIGM

The Hénon attractor A = H, is an infinite set of pocints
produced by the Hénon map. The initial condition of the Hénon
recurrence dictates which orbit on H, we produce. Let A ,A be
two infinitely long sequences of points (orbits) based on twc

different initial conditions (s.,t.) and (l.,m.) respectively,

where (s.,t.), (l.,m) are from H,. The sequence A. will be
defined as {(s_.,t.), (s,,t.}), (s,,t;),...}. The sequence # will
be {(1.,m),(l.,m),{(l.,m),...}. Although the two-dimensicnal

rlots of A. and A. are indistinguishable, the two seqguences of
points A. A. are not the same. Let h(A.),h(A.) belong to 2,
the space of all infinite sequences of zeros and ones. For
the symbolic dynamics h:H, & Y. to be one-to-one, it must be
true that if h(A,) = h(A.) then A. = A.. That is, if two
binary sequences belonging to Y. are identical then they must
be mapped from the same initial point (X,y) in H,

We cannot hope to find with any precision the pcint

n

th

belonging to H,. Furthermore, by increasing the number o
possible initial conditions or keys from which we can generate
orbits close to the attractor we enhance the cryptograghic
qualities of the pseudorandom number generatocr. That 1s, we

reduce substantially the possibility of the key being found
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and the code being broken. For these reasons we modify our
symbolic dynamics scheme to h:TR =5 %,. That is, we increase
the number of possible keys to all those possible points from
the trapping region. Under the Hénon map the trapping regicn
is also invariant; therefore, h:TR =5 Y is a symbolic dyramics
analogous to h:H, = ..

If two binary sequences are not the same then they must
have originated from different initial (x,y) values. The
total count of computer representable numbers in the trapping
region, although extremely large, is finite. Thus the task cf
proving that the homeomorphism is one-to-one on an uncountably
infinite number of points 1in the plane 1is avoided and
unnecessary. Certainly, no irrational numbers are computer
representable. Since all pseudorandom number generators are
implemented in a computer environment we qualify our gcal to
showing that tﬁe présumed homeomorphism is computer ocne-to-cne
on TR. That is, we attempt to show that the homeomorphism is
one-to-one with respect to the computer representable points
in the quadrilateral.

We propose then a computer paradigm that models the finite

rumber of computer representable numbers. The model will alsc

ive us insight into the complicated dynamics of the mag.

Consider the trapping region or quadrilateral as a gr:id
consisting of a large but finite number of points. Figure 11

shows the quadrilateral and the median x.. = .4098.
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Pigure 11 Trapping region and dynamic median

The quadrilateral is divided into two sides by the median.
An initial point chosen from the left quadrilateral will
correspond to a sequence under h:TR = Y, that will begin with
the binary digit zero (0). Similarly., an initial pcint from
“he right quadrilateral will correspond to a sequence that
will begin with the binary digit one (l). Let us focus on the
right quadrilateral. (Qur argument will extend to the lef:
quadrilateral.)

We model the computer points in the right quadrilateral
region by first enclosing it in a rectangle of minimum area.
By choosing a particular spacing we can fill the rectangle
with equally spaced points to produce a Cartesian coordinate

system. If we disregard the points in the rectangle but
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outs.de the trapping region we have a grid which can ke used
to model the large but finite number of computer representable
points. If we can show conclusively that as our spac:ing
becomes smaller and smaller, the binary sequences of these
points are all different from that of a poilint chcsen at random

not belonging to the grid points, then we should be convincea

th

that h 1s one-to-one. Fundamentally, we first choose a I:in

1l

grid spacing for the right guadr:ilateral that ccrresponds t:2
a large number of points in the plane. As we iterate a..l the
grid points and our random point through the Hénon map we cull
out those points that at each iterate do not give the same
binary element from (0,1} as the random pozint. ~e Mmust
convince ourselves that there exists some iterate fcr which
all the binary seguences corresponding to the grid points
differ from the binary sequence of the random point. Thus, we
focus on a succession of subsets of our original grid p.ints
at each 1iteration. In this systematic way with computer

assistance we hope to reveal the answer to our gues:tion.

B. PUTTING THE MODEL TO WORK

Let us begin with an example of our model in practice. This
example was chosen because 1t allows the reader a clear,
typical depiction ¢f the procedure in a small number of
izerations. Various MATLAB programs for this process on both
sides of the quadrilateral can be found in Appendix A under

the names GRDCOMPl.M through GRDCOMP4 .M. As shown in Figure
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12 the model lets us £ill the right side of the quadrilateral
with equally spaced points determined k- a specified value for

the spacing.

r Gaid Fleid and Poist Choeea oa Aftracwor

FPigure 12 Typical run right quad model: before iteration

Here we use a relatively coarse spacing of 0.06. The poinat
(W,2) represented by a cross within the field is chosen at
random but should be different from the grid points. Figures
13 through 21 represent subsequent iterates of the Hénon map
where only those points from the grid which give the same
binary sequence as the randomly chosen point (W,2) are
preserved. The median, X, = .4098, is the dynamic median, as
previously menticned; therefore, it is not surprising that we

lose approximately half the points at each itzration.
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Movemsat of Pownss ia Gnd with Same Binary Sequence

-1 Q0.5 9 05 L

Pigure 13 Typical run rignt quad model: Iterate 1

Movement of Points in Grid with Sams Binary Sequence

- -0:3 0 0.5 L

Pigure 14 Typical run right quad model: Iterate 2
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Movement of Pounts in Grid with Same Binary Sequence

0.4F

02y

02

4r
|
|
|

-1 0.5 0 05 l

Figure 15 Typical run right quad model: Iterate 3

Movement of Points in Grid with Same Binary Sequence

-1 0.5 0 03 1

Pigure 16 Typical run right quad model: Iterate 4
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Movemest of Poines in Grid with Same Disary Sequence

0.4

02+

-1 05 0 03 1

Pigure 17 Typical run right quad model: Iterate 5

Movement of Powts in Grid with Same Binary Sequence

-1 0.5 0 05 1

Pigure 18 Typical run right quad model: Iterate 6
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Movement of Poiats in Gnd with Sarms Binary Sequencs

-1 03 ] 03

L

FPigure 19 Typical run right quad model: Iterate 7

Movement of Points in Grid with Same Binary Soquence

-i 035 0 035

1

Figure 20 Typical run right quad model: Iterate 8
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Movement of Pownts 18 Grid with Same Binary Sequeacs

-1 03 0 0s 1

Pigure 21 Typical run right quad model: Iterate §

By iterate 10 (not shown) no grid point is on the same side of
Xuer @S (W,2). Figure 22 gives us an idea of how gquickly the
points that follow the orbit of (W,2) diminish in number. The
curve (1/2)" is plotted as a comparison. TABLE 1 shows the
count of points for iterates 1 through 9 that give the same

binary sequence as (W,2).

TABLE 1 NUMBER OF POINTS THAT GIVE THE SAME BINARY SEQUENCE

NUMBER OF POINTS THAT GIVE THE SAME BINARY SEQUENCE

ITERATE 0 1 2 3 4 5 6 7 8

NO. PTS 98 | 65 13 9 4 4 4 4 4
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Pointes with Same Sequence

B 8 &8 ¥ 8
A

0 . . . N : —

(] 1 2 3 4 5 6 7 s 9
Iteration

Pigure 22 Grid points with same sequence after n

iterations

Presumably based on the map’'s sensitive dependence on initial
conditions there occurs a natural spreading effect, most
noticeable in the left half of the quadrilateral, that forces
the previously close points away from each other. A typical
example of a run of this procedure using the lef:
quadrilateral can be found in Appendix B.

Does there always exist an iterate N where the sequence

for (W,Z) diverges from all sequences corresponding to even an

extremely fine grid? Certainly this example only gives a.

taste of the capability of the computer to £ill the right or
left quadrilateral with points. Based on the limitation of
computer memory it is not possible to use a Cartesian spacing

small enough to model even a small fraction of the huge number
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of computer representable points. This is not our goal. We
concern ourselves, instead, with the trend in the iterate N
where all the grid points diverge from the iterate of (W,2Z).

Let N be the iterate at which all the seguences
corresponding to the grid points diverge from the segquence
corresponding to (W,Z). Using our last example we plot the
grid point that lasted until iterate N {(call it (u,v)) with
(W,2) for the 9 iterations. The trajectory of the two points
is depicted in Figures 23 through 32. Point (W,Z), again, is

depicted as the cross (+) and the point (u,v) by an (x).

W,2 and Grid Posnt vith Same Binary Sequence

n Y] 0 05 1

Figure 23 (W,Z) and (u,v) prior to iteration
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Movemsnat of ®t Chosea oa HA and Maxching Sequeacs Pt unal Diverge

-1 25 0 03 1
Pigure 24 (W,Z) and (u,v): Iterate 1

Moavemaent of Pt Chosen oa HA and Maxchiag Sequence Pt unal Diverge

m rY; 0 05 1
Figure 25 (W,Z) and (u,v): Iterate 2
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Movemneat of Pt Chosea 0s HA and Maching Sequeace ™t andl Dverge

-1

035

0

0S 1

Figure 26 (W,Z) and (u,v):

Iterate 3

Movement of Pt Chosen on HA and Masching Sequence P until Diverge

-l

0.5 0

035 1

Pigure 27 (W,2Z)

and (u,v): Iterate 4

(Notice that the

two points are essentially superimposed).
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Movement of Pt Chosen oa HA and Maxchung Sequence P undl Diverge

-1 -OJ 0 0s L

Figure 28 (W,Z) and (u,v): Iterate 5 (Notice that the
LwWO polnts are essentially superimposed).

Movement of Pt Chosen on HA and Maiching Sequeace Pt undil Diverge

i o

-1 03 0 03 l

Pigure 29 (W,Z) and (u,v): Iterate 6 (Notice that the
two points are essentially superimposed).
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Movernant of Pt Chosen on HA and Maxchiag Sequence P saal Diverpe

-1 0.5 0 05 1

FPigure 30 (W,Z) and (u,v): Iterate 7 (Notice that the
two points are essentially superimposed).

Movement of Pt Chosea on HA and Marchisg Sequence Pt andl Diverge

Figure 31 (W,Z) and (u,v): Iterate 8
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Moverment of 't Chosen on HA and Masching Sequeacs Pt uadil Diverge

1 23 0 05 0
Figure 32 (W,Z) and (u,v): Iterate 9

Notice the proximity of (W,Z) and (u,v). They are in nc
way superimposed. Indeed, in a Euclidean sense the two points
are not close at all. These positions may seem acceptable but
even when the spacing between points is dropped to the limits
of computer memory the proximity of (W,2) to (u,v) does nct
appreciably change from this typical example. I: is a fac:
that throughout the trajectories of the two points there may
be iterations where the points are virtually superimpcsed as
in this example, but as a rule (W,Z) and (u,v) are not
initially neighbors. Furthermore, as in the typical run using
the left quadrilateral in Appendix B, sometimes more than a
single point (u,v) gives the same binary sequence as (W,Z;).

Typically one, but up to seven points (u,v), 1in arbitrary
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observations, have mirrored the bitstream of (W,2) and these
multiple matches likewise are not tightly packed points. This
phencmenon lends support to our model because 1t 1is not the
points closest to (W,Z) which typically give the same binary

sequence. Typilcally many other points were much closer in a

0]

Euclidean sense to (W,Z2) but they were rejected. That 13, w
cannot look only in the immediate vicinity of (W,Z) for pcints
that offer good bitstream matches. Certainly, 1t a
cryptographer knew that his chances for regenerating an
1dentical binary sequence were much higher in the vicinity cof
{W,Z) he could use it to his advantage. Therefore, this
gquality 1s benericial.

The GRDCOMP1.M - GRECOMP4 .M models (mentioned previcously:
perform a grid comparison between the chcsen point (W,Z) and
the grid developed on a particular side of the dynamic median.
The models GRDCOMPl.M and GRDCOMP3 .M examine behavior in the
right quadrilateral, and GRDCOMP2.M and GRDCOMP4.M model the
left guadrilateral. The GRDCOMP1l.M and GRDCOMP2.M models use
a predetermined (W,Z) value from their respective side of the
quacrilateral but not on the attractor (H,) to compare agains:
the developed grid. The GRDCOMP3.M and GRDCOMP4.M mcdels

differ from GRDCOMP1.M and GRDCOMP2.M in that (W,Z: 3

W

iterated through the Hénon map to ensure that the pcin-

neighbors the attractor before the comparisons begin.
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These computer models give us a feel for the N value to
expect whe.. we designate a particular spacing in the right or
Lef- gr:d field. The computer models PROOFl.l - PROCF4.M are
1den~tizal to the GRDCOMPL.M - GRDCOMP4.M models except Eha:
rhey allow us to vary the spacing. We are able to desigr.:ze
a coarse and fine spacing range and an increment tc use
becween these values. As the Cartesian spacing 1is stead:i’
decreased and more points £ill the particular half-field, by
observation, N likewlise seems toO increase steadily. This
behavior is pictured in Figure 33. Here, we use the PROCF. .M

model incrementing the spacing from .003 to .5 by .CCl for a

—ora. of nearly 500 entries.
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Figure 33 Reduction in sgacing vs. N (PROCFL.M mcdel)
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Although there are a few outliers all the N values appear to
be clustered and to steadily increase overall as the spacing

becomes finer and finer. This behavior was observed fz-r th

(]

FROCF2.M - PROCF4.M models as weil.
Let us establish .10 as the cocarse spacing upper kcund

hecaus

)]

i® 1s a round number and 1t allows us to fill either

b=

halif-field with more than just a few points. In computer runs
using this upper bound and steadily finer spacing (o <the
limits of computer memory) we Observe the same general
relarionship between the decreasing spacing and N values.
That 1s, as the spacing 1s steadlly decreased the value of N
correspendingly increases.

To further test our models certainly we must not limit
curselves to a comparison of a single (W,Z) wvalue over the
range of spacing values. Because we observe the same genera.
behavior in our GRDCOMP models whether we use a particular
{W,Z) not on the attractor or a (W,Z) from the attractor lerx
us chcose an arbitrary number of (W,Z) values and repeat our
models !(PRF1.M - PRF4.M). For simplicity the arbitrary number
cf (W,Z) values (31) are taken from a line belonging to the
particular side of the quadrilateral. Figure 34 shows a run
2f model PRF1.M (which corresponds to our GRDCOMP1l.M model but

for multiple spacings and (W,Z) values).
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This run again is typical of all runs of the models PRF1.M -
PRF4.M. This run increments the spacing from .01 to .10 zn
steps of .001. Notice that there do not appear to be 31
values for each spacing value. This phenomenon actually
supports our observations because many of the points are
superimposed on each other on the graph. Again, we observe an
apparently steady increase in N values as the spacing beccmes
finer with few significant outliers. This graph conta:ins
almest 3000 points.

In order to show experimentally that the observed
behavior exists, we select a modest fine spacing as a lower
bound and a tiny increment. By using an extremely small

spacing we are able to collect an enormous amount of data to
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use as statistical evidence. The limitation 1s not computer
memory but the mainframe graphical statistical system (AGSS)
which allowed a sample size of 45136 points. For each of the
31 (W,2) values 1456 separate runs were completed. This
corresponded to an increment of .0000625 between .01 and .10.

The results are pictured in Figures 35-38.

NONLINEAR CURVE FIT
SCATTER PLOT, SSZ=45138

Y = AXEXPON BxX
. . WHERE: A, B = 21.092, -10.953
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Pigure 35 Nonlinear curve fit model PRF1.M
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NONLINEAR CURVE FIT

SCATTER PLOT, SS2=45136

- * ecesvacesccomen e e o

Y = AXEXPON BxX
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Figure 36 Nonlinear curve fit model PRF2.M
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Pigure 37 Nonlinear curve fit model PRF3.M
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This result seems to suggest that in a
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Figure 38 Nonlinear curve fit model PRF4.M
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statistically acceptable fashion, given a particular spacing
for our grid we can predict an N value for which the binary
sequence of (W,Z) will diverge from those of the grid field.

How small can we make c.r grid spacing before our models
fail? Certainly, for any particular computer there will exist
a value, call it &, such that computer numbers within thart
tolerance will be considered the same. That is, if x and vy
are computer representable numbers and |x-y | < €, then x = y.

The value of € varies. Let computer epsilon be defined as
a value, €, below which 1 + € = 1; 386 Matlab version 3.5M
computes this value as approximately 2.24 x 10°°. However,
the value of € (using the same definition) such that ¢ + €& =
0 is on the order of 10 for the same system. Cne can
speculate that at some diminutive spacing S, our model will
fail. That 1is, there will exist a spacing where the computer
will not be able to build the grid. The computer model will
calculate the first point x in the rectangle which encompasses
the quadrilateral. But, because the spacing S is smaller than
the € tolerance that the computer needs to recognize the nex-
point vy, x and y are seen as the same point. Only the first
grid point will appear in the grid. However, this 1s in
keeping with cur definition of one-to-one for our presumed
homeomorphism because if two sequences are wholly the same
then they come from the same initial condition. That i1s, <he
sequénces are generated from two initial conditions (points!

that the computer recognizes to be the same in £in

ot

e

pa-
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precision although the initial conditions would differ 1in
infinite precision. Thus, we have experimentally shown that
for the symbolic dynamics 1f we have two unequal 1init:ial
conditions then after some iteration N the corresponding
sequences should diverge. Therefore, we have experimental
evidence to support the statement that the symbclic dynamics

1s one-to-one.
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IV. ONTO

A. ONTO PROPERRTY

Whether or not the proposed symbolic dynamics has the cnto
property previously mentioned 1s directly brought into
question by the runs anomaly which was closely examined 1in
reference 13. This property, defined in Chapter II. section
A., informally states that under the symbolic dynamics, every
possible sequence of zercos and ones is possible or realizable.
If a pseudorandom number generator has a favorable runs
property, all possible n-tuples (sequences of zeros and ones
of length n) must not only be possible but their occurrences
must be balanced. The unbalanced count of particular n-tuples
1s precisely the runs anomaly pointed out by Forré as the
fatal flaw of her pseudorandom number generator.

The runs property of a binary sequence 1s tested by
counting the occurrences of the 2" different possible n-
tuples. For example, 1n Heyman’'s study, typical inary
seguences of length 10* were used to test 2-tuples cn a

computer. There are 2-=4 2-tuples: {0,0},{0,1},{1,0},{1,1}.

The program ONTO.M (Appendix A) counts the four different 2-

tuples in a binary sequence. Figure 39 shows a bar graph
which gives the count or the four <-tuples for a typical

binary sequence of length 5 x 10°.
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Figure 39 Incidence of 2-tuples in typical Hénon
generated binary sequence

Notice that the horizontal axis is actually the decimal
equivalent of the n-tuple shifted by cne from zero. That 1is,

instead of the following 2-tuple to decimal correspondence:

2-tuple decimal
00 - 0 where [0 0] * (2 1]T =0
01 - 1 where (0 1] * [2 1]T =1
10 - 2 where (1 0] * (2 1]T7 = 2
11 - 3 where [1 1) * [2 1]7 = 3,
we use
00 - 1
01 - 2
10 - 3
11 - 4.

We will use this shifted correspondence for all n-tuples. The
unbalanced or uneven bins of 2-tuples in Figure 39
demonstrates the runs anomaly. The depth of this anomaly is

shown in Figures 40-42 which correspond to 3,4 and 5-tuple
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counts respectively for typical binary sequences of length 5
x 10°. Modifications of ONTO.M were used to produce the
associated data for finding the count of 2-tuples to 17-

tuples.
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Pigure 40 Incidence of 3-tuples in typical Hénon
generated binary sequence
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FPigure 41 Incidence of 4-tuples in typical Hénon
generated binary sequence
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Pigure 42 Incidence of S-tuples in typical Hénon
generated binary sequence

Notice that in Figure 41 the bin corresponding to the decimal
13 1s empty. The bin corresponding to the decimal 7 is also
empty but in tests using binary sequences of length 10° this
bin is not. The 13 bin, however, remains empty in the 10°
length test.

It was believed [Ref.13] that as sequences of greater and
greater length were tested, the missing sequences would be
found although the runs property, namely the balance of the
bins, probably would not improve. Under memory constraints of
the runs property test using a Sparc station 2, the length of
the longest possible testable binary sequence was roughly 10°.
Using initial conditions from all four quadrants in separate
tests with binary sequences of length 10°® no 4-tuple was ever
found to correspond to the decimal 13. The decimal 13
corresponds to the binary 4-tuple (1,1,0,0}. It is therefore

expected that, when the S-tuple runs are tested, those 5-

S8
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ruples which contain the 4-tuple

should be empty.

{1,1.0,0}) (see Table 2}

TABLE 2 5-TUPLES CONTAINING (1,1,0,0) AND DECIMAL EQUIVALRERNTS

5-tuples with {(1,1,0,0}

decimal equivalent

{1,1,0,0,0)} 25
{(1,1.0,0,1: 26
{G,1,1,0,0} 13
{1,1,1,0,0} 29

This 1s 1indeed the case; however,

these are not the only

subsequences of length 5 unrealized in a sequence of length

-~

DS Table 3 lists those additional 5-tuples that are not

realized and -heir corresponding decimal values.
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TABLE 3 5-TUPLES AND THEIR DECIMAL EQUIVALENT

S-tuple decimal eguivalent
{0,0,0,0,0} 1
{(0,0,1,0,0} 5
{1,0,1,1,0} 23
{1,1.0,1,1} 28

In fact, the property was tested for n-tuples fromn = 2

tc 17 (see Appendix C for 6 through 16-tuple runs) and an

increasing percentage of unrealized sequences occurs. Table

4 shows the number of unrealized sequences and the total

number of possible n-tuples for a particular n.
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TABLE 4 UNREALIZED SEQUENCES AND TOTAL POSSIBLE n-TUPLES

n-TUPLE UNREALIZED POSSIBLE PERCENT
SEQUENCES SEQUENCES UNREALIZED

2 4] 4 2

3 0 8 )
4 1 16 6.25
5 8 32 25.00
6 28 64 43.75

7 75 128 58.59

8 179 256 £69.92

9 335 512 77 .93
L 856 1024 83.59
11 1794 2048 87 .60
iz 3715 4096 80.7¢0
13 7628 8192 #3.12
14 15580 16384 95.09
i5 31588 32768 95.4¢C
16 63993 €5536 ©7.£€5
17 128922 131072 98.3¢
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Figure 43 shows how the percentage of unrealizable sequences

. |
increases as the n-tuple length increases.
[,_, 1 4
-
= 08F
>
2 0.6f
[
S 0.4F
S 02k
[ ¥
-
& 0
0 2 4 6 8 10 12 14 16
n-tuple
Pigure 43 Percent of empty n-tuple bins vs. n
B. ANALYTIC PROOF OF UNREALIZABLE FOUR-TUPLE
Based on the previous data alcne, the presumed
homeomorphism cannot be disqualified from having the onto ¢
property. An analytically substantiated example of a wholily
unrealizable sequence, however, would suffice. Let us
investigate the first suspected unrealizable sequence,
{1,31,0,0}. From the runs tests we see that the sequence
{1,1,0,1} is possible although {(1,1,0,0} is not. Figure 44
shows the portion ocut of 5000 points on the attractor which
gives the sequence {(1,1,0}.
62
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-0. o
l 6 -1 -0.5 0 0.5 1
Figure 44 Points from a sequence of 5000 that give the
sequence (1,1,0}
° ®
These are also the same points which give the sequence
{1,1,0,1}, since none gives the sequence {1,1,0,0}. It is ®
apparent that these points are localized in a particular area.
Figures 45-47 show the subsequent iterates of these points.
®
@
®
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Figure 45 First iterate of points that give the sequence

{1,1,0}
QS‘ - —
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\\\
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0.1 “ 1
or .
-0.1~ 4
0.2~ 4
0.3 4
0.4~ 4
05 |
- -1 0.3 0 0.5 1

Picure 46 Second iterate of points that give the
sequence {(1,1,0}
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FPigure 47 Third iterate of points that give the segquence
{1,1,0}
@
It is clear that all these points under iteration correspond
to the sequence {1,1,0,1}. A quadrilateral is placed around
the points of Figure 44 1in Figure 48 (call it the ]
subquadrilateral or subguad).
e
®
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Subquad. Quadrilasral aad Spiis oL 4098

o

-1 0.5 0 0.5 t

Figure 48 Subquadrilateral placed around those points
that give th2 sequence (1,1,0}

By iterating the points belonging to this subguad using the
program FIND110.M in Appendix A (see Figures 49-51) we see
computer-generated evidence that no points within the subquad

correspond to the binary sequence {1,1,0,0}.
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Inerased Subquad.Quadrilassral sad Spiic of . 4098

-1 0.5 0 03 1

Pigure 49 First iterate of points comprising
subquadrilateral

Ierased Subquad. Quadrilaseral and Split of .4098

-1 -0:5 0 0.3 1

FPigure 50 Second iterate of points comprising
subqguadrilateral
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Insrasd Sebquad.Quadrilesscal aad Split of 4098
0.4
02t
or
02}
0.4
1 25 0 05 1

Pigure 51 Third iterate of points comprising
subquadrilateral

This exclusion zone does plainly suggest that the sequence
{1,1,0,0} is unrealizable. Using a binary Hénon seguence of
length 10°, approximately 5115 points lie in the subquad or
exclusion zone. This suggests that an orbit has a probability
density of approximately 5.115% in the subquad. Since the
Hénon map has been shown numerically to have topological
transitivity, we expect that under reverse iteration of each
point in the subguad there will be a preimage which will lie
in the subquad. Therefore, this means that all points pass
through the subquad and that no points which pass through this

window give {1,1,0,0}.
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Let us look more closely now at the points that would give
{1,1,0,0} instead of those that wculd rot. If we can show
rhat the set of points that can possibly give (1,1,0,0} is the

empty set, then we will have proved that this propcsed

y

symbolic dynamics does not possess the cnto property. Ekecal

~he Hénon map introduced in Chapter I:

... = 1 - 1.4%- + y.

It follows that:

... =1 - 1.4x.- + .3x.... (4.1)
Zur first goal is to find the solution set that corresponds to
{1,1,0}. In order for a sequence of (x,y) values to
correspond to {1,1,0} the x values {X..., X., X...} must cbey the

following inequalities:

Xooo > Xueo (4.2)

X, > Xye- (4.3)

Xoo: S Xye: (4.4)
where x,:-=.4098, the dynamic median rounded to fcur
significant digits (previously discussed). Inequality (4.Z]

can be substituted in equation (4.1) as follows:

x... > 1.12294 - 1.4x° (4.5)
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where the constant 1.12294 is rounded to five significant
digits as an underestimate in order to make our proof valid.
Moreover, in all such cases we round in the appropriate (i.e.
conservative) direction. In Figure 52 we see via (4.5) that
the solution set corresponds to the region above the inverted

parabola, in the x.,x..,-plane.

L7 -0.3 0 0.5 1

Pigure 52 Solution set of poincs that could give the
sequence {1,1,0} under x,, restriction
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Figure 53 shows the possible solution set under restrictions

(4.2),(4.3) and (4.4)

‘n-l ﬁ
! - A’/’__— -
0.3~
f X
0 n
i
ol
Q0.5 -
I
|
|
1!
- 0.5 X .3 1
1 0.3 0 uéﬁ

Pigure 53 Solution set of points that give the sequence
{1,1,0} under x., restrictions

By 1inequality (4.4), x,,, has a maximum value less than or
equal to X4,. 1f we let x,.,, equal exactly xXu, in inequality
(4.5) then x, is further restricted to a value greater than
.71371. Thus, the solution set corresponding to equation
(4.1) is limited to the region shown in Figure 54 and reviewed

as follows:

b region above the inverted parabola 1

X, : region such that x, > .71371 : 1

X... region such that x,.. £ .4098 : 0
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Pigure 54 Solution set of points that generate the
sequence (1,1,0}

By equation (4.1) it follows that if

x 1 - 1.4x.% + .3x,.,

L]

then
X.., = 1 - 1.4x%,.,;° + .3x,. {(4.6)

To achieve the sequence (1,1,0,0), x,, must be less than or
equal to .4098. However, it is clear that the largest x,.:
value in equation (4.6) occurs at a minimum value for x, and
a maximum value for x,.,, which lies in the solution region in
Figure 54. The minimum x, value and maximum x.., value are
respectively .71371 and .4098. Using these optimum values in

equation (4.6),
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X..o = 1 + . 3(.71371) - 1.4(.4098)-
= .979003.

The symbol (=) 1indicates that we round to the number cf
significant digits shown and that we round in the appropr:iate
(conservative) direction as previcusly defined. This x .
value {not surprisingly) corresponds to the point with the
minimum X value in Figure S1, that is, the third iterare of
the subquad region which only gives the sequence {1,1,0,1}.
Cf course, this minimum X... value exceeds .409&, and
therefore, the sequence {1,1,0,0} is not realizable. Thus, we
have found a counterexample to the proposed homeomcrphisin.
Furthermcre, 1t 1is shown in Appendix D that the segquence

{0,0,0,0,0} 1s also analytically unrealizable.
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V. CONCLUSIONS

A. RUNS ANOMALY-FATAL FACTOR OR LIMITING FACTOR?

We have seen that the classical Hénon map exhibits the
attributes normally accepted as characterizing chactic
dynamical systems. These properties 1include sensirtive
dependence on i1nitial conditions, topological transitivity and
a dense set of periodic points. Despite this, however, we
have provided ample numerical evidence and rigorous analytical
prcof that the proposed symbolic dynamics scheme h:TR 3 X for
generating pseudorandom binary sequences is:

1) not a homeomorphism for the proposed symbolic dynamics
scheme since it is not onto. (Because the Hénon attractcr 1is
a subset of TR we can also conclude that h:H, - £ 1is no:
onto.)

2} highly restricted in its viability as a pseudorandom
number generator.
~e have shown that not all binary seguences are generated with
equal frequency. In particular we have shown that certairn
sequences are not realizable and that o:thers are very sparselvy
attained. These facts support the observaticons and
conclusions of Réjane Forré which suggest that this scheme is
unsuitable as a reliable means o¢f generating pseudorandom

numbers.
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The evidence suggests that the runs property severely

limits the potential of the scheme for widespread practical

()

use. It 1s shown in reference 18 that subsequent elements ¢

rhe binary sequence may actuaily be predicted with 73i-8&¢

N

5
(8]

ccuracy by an artificial neural network (compared vtz ©7%

U
3
()

uracy for a ccin flip), most likely due to the severity cf
rhe runs anomaly. However, because of its simpl:icity and
nonlinearity there may exist some applications for which the
scheme would be well-suited. It 1s our belief rthar the
general :dea of using a chaotic discrete dynamical system to
generate pseudorandom binary seguences, however, has merit and

deserves additicnal study.

B. FUTURE WORK FOR AN IMPROVED SYMBOLIC DYNAMICS

Our numerical results reflect the basic structure cf the
attractor. Despite the lack of a homecmorphism the structural
nature of rthe attractor 1s apparent in the binary ocutgut of
the symbclic dynamics scheme. Although the attractor 1is
accepted as possessing chaotic attributes, we believe that due
to the structure of this "chactic driver" (the classizal Héncn

map’) pseudrrandomness 1s not fully realized in this scheme.

~we believe that a sequence of more than four zerocs is nct

possiblie because the left fixed point is both repelling anz

not on the attractor. Contrarily, it has been shcwn that a
sequence of up to 23 ones is possible {Ref.16]. We conjecturse

fas suggested by comnutational evidence) that the sequences of
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crnes are possible because the right quadrilateral fixed pcin-t

[97]

153 a saddle point. Specifically, the seguence of cnes :
rossikble due to the attracting axis of the saddle point. This

suggascs thar the symbolic dynamics scheme could ke effecziv

ti]

Y

:f rhere were such a saddle point on the atrcractcr con beo!

s

s:des c¢f the dyramic median Xu--.
Since the location and nature of the fixed points fcr the

Hén>n map Jdepend on the (a.b) parameters of the map,

il
1)
rh

1:p.170}] there may exist parameter sets which grov:ide

oD

b
ul

structure. The chaotic bands present in the bifurcaticn

.

diagrams suggest there exist many other (a,b) pairs that may
e even more complicated dynamics. Proving the existence cf

'3,0 parameters that give us these desired characterisTics 13

only tne first srtep. It 13 also reguired that & bcunded
azTractor exist for the associated parameters. Furthermore,

Forré nad rthe luxury of being provided a numerically

-z’ zulated “rapping region from which to take the pseudcrandos

number generator Key. This region, if 1t exists at all, would
mzve T be recalculated for the new {a,b: pair.

IZ n czuld be proved that there does not exizt an  z2.,k¢
catr which gives rise to saddle pecints that §possseszs Th=
crevizusly mentioned attributes, then i1t may be possibls oo
132 zZnitner map which corresponds to a different assractiy
wiTh these gualities. However, the majcr asset cf "he Heénorn
reTurrence 1S 17TS u-ter simplicity which translates %o the
fzz- generarion ¢f pseudorandom sequences.

.



Basing the symbolic dynamics scheme on the x value of each

iterate 1s simple but it is not clear that it 1is the most

@
rh

tfective. If we are willing to accept a more complicarted
scheme we could base our split on a different linear median cr
a nonlinear median. The goal in choosing a given median would
be o bring parity to the runs property for the system of dual
saddle points while retaining the other properties previously
mentioned. A more complicated scheme might generate binarv
seguences more slowly, but the loss of speed may be warranted
o 1mprove the runs property.

It may be argued that despite an improved system there
will still exist binary seguences that are unrealizable.
However, the severity of the associated runs anomaly could be
diminished should the shortest of these unrealizable sequences
be of sufficient length. That is, we have seen that an
unrealizable 4-tuple was catastrophic in this case because the
problem of unrealizability translated to every subsequent n-
tuple, In fact, we must anticipate that as described :in
Chapter IV even more n-tuples will be unrealizabkle than
expected. The degradation of the system thus is directly
related to the length (L) of the first unrealizakle
segquence(s;. Since a pseudorandom number generator is Jjudged
by mcore than just the runs property criterion (see conclusicn
Fef. 13} a system which possesses a "large" L-value may s:ti.-

provide an acceptable pseudorandom number generator.
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APPENDIX A: MAIN PROGRAMS
NOTE: GRDCOMP PROGRAMS REQUIRE THE HENREAL PROGRAM TC RUN

% function [xmat, ymat) = grdcompl(sp,W,Z)

% This function takes a point (W,Z)from the RT quad,initiates
a gquad grid

% field based on a certain spacing, then iterates those grid
field points

% that match the binary string of (W,2)[use(.l,.1) for now.
As long as

% the strings match, pcints are iterated using the Henon
recurrence. Only that

% (those) points that completely match are finally plotted
according to the

% following scheme:

% b. original grid field points

% r* original (W,2Z)

% go iterated field points with matching binary string
at nth iteration

% W+ iterated (W,Z) at nth iteration

% gx original xvec,yvec point(s) which matches binary

% string of W,Z. We also show how W,Z and
xvec{indices),yvec(indices) "walk" to the Henon attractor at
each 1iteration (with the attractor on screen).
o=linspace(-1.33,1.32,500);
s=-.1083*0c + .276;
u=linspace(1.32,1.245,500);
v=3.64*u -4.6718;
g:llnspace( 1.06,1.245,500);
=.1533*g -.3344;
e:llnspace(—l.06,-1.33,500);
£f=-3.407*e -4.1119;

splitc = .4098;
a = [~-.1083 -1;-3.64 1;-.1562 1};
b = [-.2760;-4.6718;-.3344);
c = [split:3p:1.32};
d = [-.6:85p:.5];
[x, ¥v] = henreali(750,-1.0,-.25);
xline = [split split]; yline = [-1.32 1.32];
lenc = length(c); lend = length(d)
xXvec = zeros{l, lenc*lend); yvec = zeros{l,lenc*lend’;
1f min((a*[w;z]) > b) == | w < selit
disp(’initial value 1s not in the right quadr’)
return;
end
k = 0;
for p = 1l:lenc
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for r = 1l:1end

k=k+1;
1f max((a*([c(p);d(r)]) < b} == 0
xvec (k) = c(p); yvec(k) = d(r);
else
xvec (k) = -10; yvec(k) = -10;
end
end
end
xvec = reshape(xvec, lenc*lend,l);
yvec = reshapelyvec, lenc*lend,l);
m = find{(xvec ~= -10 | yvec ~= -10);
xvec = xvec(m); yvec = yvec(m);
XX = Xvec; YY = yvec;
ww = W;
Tz = Z;
axist{-1.32 1.32 -.6 .50);
indices = l:length(xx); $ [1 234 . . .]
1= 1;
gvec = length({xx]);
q = indices;
leng = length(xx) %
irnitialization of g
plot (xvec,yvec,'b.’,W,Z,'r*’ ,xline,yline, ‘'w-') ;hold on;
plot(o,s,’'w.’,u,v,'w.",e, £,’w.",g,h,w.’}; hold on;

rirtle(’'Grid field and W,Z');pause;clg;hold off;
while length(g) > 1;
axis([-1.32 1.32 -.6 .5]);

x0 = yy + ones(sizelyy)) - l.4*xx."2;
y0 = .3*xx;
wl = zz + 1 - 1.4*ww."2;
z0 = .3*ww;
if w0 > split
gtemp = find(x0 > split | x0 == split});
else
gtemp = find({x0 < split);
end;
1f lengthi(gqtemp) == 0, break;
else g = gtemp;
end
1 =1+ 1; % counts 1lterates where at

least cne point matches
leng = length(q)
g7ec = [qvec,length(qg}];% plot of how # with same binary

seguence
indices = indices(qj; % decreases each time through lccop
xx = x3(q); % preserves to next iterate those
matching values of
vy = y0(q); % x0 and yo0
ww = wi;




zz = 20;
pause;
plot (xx,yy.‘g. ' ,w0,z0, 'w+’,xline,yline, ‘'w-');hold on;
plot(o,s,'w.’,u,v,'w.",e,f,’w.’,g,h, 'w.’);hold on;
ritle('Movement of points 1in grid with same binary
seguence’)
pause; clg;hold off;
end
axis;
ves = (1/2).7((l:1length(gvec))-1);

plot {(l:length(gvec))-1,qvec,'r’, (l:1length(qgvec))-1,gqvec(l}*

vec, 'k’ ;

r1tle(’Decrease in # of grid points with same binary
seguence vs 1/2°n’)

rause;clg;

% In this way,

which grid

point the

we need the index key

‘indices’ to tell to

% surviving 1iterate corresponds with respect to the original
xvec and yvec.

axis([-

1.32 1.32 -.6

.51);

r.oti{xline,yline, 'w’,x,y,'b.’,0,s,'w.
,‘w.’};hold on;

plot {xvec(indices),yvec(indices), ‘gx’,W, 2, ‘r*');hold on;
title('W,Z2 and the grid peint with same binary

sequence’)
hold off;

;pause;

xnew = xXvec(indices);

ynew = yvec(indices) ;

the point
Xnew, ynew

axis([-1.3

rlot(xline,yline,'w’',x,y,'b.’,0.5, " 'w.

‘,u,v,'w.’,e,f,’w.’,g,n

% now we show a plot of how W,Z and

% that generates the same binary sequence

% walk around the attractor
2 1.32 -.6 .8]);

, W)
hold on;
xnewt = xnew;
ynewt = ynew;
WL = w;
2t = Z;
for n = 1:1 - 1
x0t = 1.0 - l.4*xnewt
yCt = .3*xnewt;
wlt = 1.0 - 1.4*wt."2
z0t = .3*wt;
wt = wit;
zt = z0t;
xnewt = x0t;
ynewt = y0t;
plot (x0t,y0t, ‘gx’,wlt
9 ® @

.72 + ynewt;

+ zt;

,z0t, ‘r*’);
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title(’'Movement of pt chosen on HA and matching sequence pt
until diverge’);

pause; plot (x0t,y0t, 'ix’,wltc,z0t, "1*');

end

hold off;
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% function [xmat, ymat] = grdcomp2(sp,W,Z)
% This function takes a !W,Z) from the left quad, initiates a
gquad graid field
% based on a certain spacing, then iterates those grid f:eld
points that
% match the binary string of (w,Z2} [use (-1,-.25) for now].
As long as the
% strings match, points are 1iterated using the Henon
recurrence. Only that
% (those) points that completely match are finally plotted
according to the
3 fcllowing scheme:
% b. original grid field points
% r= riginal (W,Z)
% go iterated field points with matching binary string
at nth 1teration
% W+ iterated (W,Z) at nth iteration
% gx original xvec,yvec pcint(s) which matches binarv
string of W,Z
% We then plot the iterates of W,Z and the point that most
closely matches
% its binary seguence.
o=linspace(-1.33,1.32,500);
-.1083*0+.27¢;
linspace(1.32,1.245,500);
3.64*u-4.6718;
linspace(-1.06,1.245,500);
.1533*g-.3344;
inspace(-1.066,-1.33,500);
3.407*e-4.1119;
‘ .4098;
(3.4074 1; -.1083 -1; -.1562 11;
[-4.1119; -.2760; -.33447;
{[-1.32:sp:split};
[-.6:3p:.5]);
[x, = henreal (750,-1.0,-.25);
le..c = lengthic); lend length(d);
xline = [split split]; yvline [-1.32 1.32];
Xvec = zeros(l,lenc*lend); yvec = zeros(l,lenc*lend);

1if min{{a*{w;z]) > b) == 0 | w > split

disp(’initial value is not in left quadr’!
return;
end
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[a

r =1l:1lenc
for r = 1l:1lend
k=k+1;
1f max((a*{c(p);d(r)]) < b) ==
xvec (k) = cl(p); yvec(k) = df
else
xvec (k) = -10; yvec(k) = -10;
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4 ena o

end ®
xvec reshape (xvec, lenc*lend, 1) ; ¥makes a coclumn vectcr g
yvec reshape (yvec, lenc*lend, 1) ;
m find (xvec~= -10 | yvec~= -10); *
xXvec xvec (m) ; c = yvec(m);
XX = vec;
wWwW = W,
axis{
1ndices
1

1]
3
[}

o onn

b3
<
0]
0

yve
YY
zz

[T}
ra*l

-1.32 1.32 -.6 .5]); g
l:length(xx); % (1234 . . .]
1;
gvec length (xx) ;
o indices; %
initialization of g
leng = length(xx) ®
piot (xvec,yvec, 'b. " ,W,Z,'r*’,xline,yline, ‘w-'); hold on;
plot’o,s,'w.',u,v,'w.’,e,f,’w.',g,h,‘w.');hold off;
1itle{’'Grid field and W,Z’);pause;clg;hold off;
while lengthi{qg) > 1;
axis({-1.32 1.32 -.6 .5));
x( Yy + ones(sizel(yy)) -
v 0 L3*XRX;
wC zz + 1 - 1.4*ww."2;
z0 3Yww
1f w0 > split
gtemp = find(x0 > split | x0 == split); ° ®
else
gtemp = find(x0 < split);
end;
1f length(gtemp) == 0,break;
else g = gtemp;
end
1+ 1; o
length(qg)
(gvec, length(q)];
indices indices (q);
XX x0(q); % preserves to next iterate those
matching values of
yoi(q); % x0 and yO0 4
w( ;
z0;

o n II'-—*

-
-

1.4%xx."2; L

ionow

1
leng
gvec

2
i

pause;
pliot 'xx,yy,’'g.’,w0,z0, ‘'w+’,xline, yline, w—‘);hold on;
plot{o,s,'w.’”,u,v,'w.’,e,f,'w.’,g,h, ‘w.’}; hold off;
title{‘Movement of points in grid with same b nary ®
seqguence’) ;
pause;clg
end
axis;
ver = {1/2).7{({l:1length{qgvec))-1};
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plot ({l:length(gvec))-1,qvec,’'r’, (l:lengthigvec))-1l,gvecil)=
vec, 'b’});
title('Decrease in # of grid pts with same binary sequence
as iter incr’)
pause;clg
% In this way, we need the index key ‘indices’ to tell to
which grid point the
% surviving iterate corresponds with respect to the original
xvec and yvec.
axis([-1.32 1.32 -.6 .5]);
ploti(o,s,'w.’,u,v,'w.”,e,f,'w.’”,g,h,'w.’);hold on:;
p.o: (xvec(indices),yvec(indices), 'gx’' ,W,Z,'r*’,x,y,'b. ,xlin
e,yiine, ‘'w’');
title('W,2 and the grid point with the same binary
sequence’ ) ;pause;
held oféf;
xnew = xvec (indices) ;
ynew = yvec{indices);
([-1.32 1.32 -.6 .5]):
plct(xline,yline, 'w’,x,y.'b.’,0,s,'w.’",u,v,'w.’,e,f,'w.’,qg.,h
W)
hold on;
xnewt Xnew;
ynewt ynew;
wt wW;
2t Z;
forn = 1:1 -1
x0t 1.0 - 1.4*xnewt.”2 + ynewt;
vOot .3*Xnewt ;
wit 1.0 - 1.4*wt."2 + zt;
z0t .3*wt;
wt wlt;
zt z0t;
xnewt x0t;
ynewt yOt;
plot (x0t,y0t, ‘gx’,wlt,z0t,‘r*’);hold on;
title{’'Movement of W,Z and matching sequence pt until
divergence’) ;pause;
plot (x0t,v0t, "1x’,wlt,z0t,"1*");
end
hold off;

(] T 1 T [ (O [ { B ot
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% function (xmat, ymat] = grdconp3(lp,w Z)

% This function take
iterares the point n

S a point (W,

Zifrom the RT guad and

¥ rimes 1in order to ensure the point 1s on the Hencn
atrTractori{ensuring
% -—ha- the nth iterate 1s in the left quadrant). It
iritiazes a grid field
% based ¢n a certailn spacing, then lterates those grid field
cc.nts tharx
% match the binary string of (wnew, znew) {use {(-1,-.25) fcr
W,Z2.. As lcng as
¥ -—he strings ma-ch, polnts are i1zerated using the Henon
recurrence. Only that
% (zhcse! points that completely match are finally plctted
accoriing o the
% f>llowing scheme:
% k. criginal grid field points
% r* criginal (W,2Z)
% go iterated field pecints with matching binary string
at nth 1lteration
% W 1terated (W,Z) at nth iteration
% gx original xvec,yvec pocint(s) which matches binary
sTring ¢t W, Z
% We also show how W,Z and xvec(indices),yvec{indices)
"“walk" ©c the Henon
% attractcr at each iteration (with the attractor on
screen) .
c=linspace(-1.33,1.32,500);
s=-.1283*0c + .276;
u=linspace(1.32,1.245,500);
v=3.64*u -4.6718;
g=linspace(-1.06,1.245,500)
h=.1333*g -.3344;
e=linspace(-1.06,-1.323,500);
f=-3.427*e -4.1119;
spiit = 4098;
a = [-.1083 ;-3.64 1;-.1562 1};
b = [-.2760; —4 6718;-.3344];
c = [split:sp:1.32};
d = [-.6:8p:.5];
ix, ¥v] = henreal(750,-1.0,-.25);
xiine = [split split]; yline = [-1.32 1.32};
lenc = lerngth(c); lend = lengthid};
xvec = zeros(l,lenc~*lend); yvec = zeros(l,lenc*lend!;
k = o;
focr p = l:lenc
for r = 1:lend
k=k+1;
1f max({(a*{c(pi;d(r)]) < b) == 0 -
xvec (k) = c(p); yveclk) = d{r);
els
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xvec(k) = -10; vyveci{k) = -10;
end
end
end
xvec = reshape(xvec,lenc*lend,l);
yvec = reshape(yvec, lenc*lend,1l);
m = find{xvec~= -10 | yvec~= -10);
xvec = xvecim);
yvec = yvec(m);
wartr = w; % This preserves the values of W,Z
zagterr = zZ;
for 1 = 1:40 % This
ensures wattr,zarcr is
wattr(3j+1l) = 1.0 - l.4*wattr(j)"2 + zattr(j); % on the
attractor
zattr(3+1l) = .3*wattri{j);
1f 7 > 20 & wattr(j+1) > split, break;
end
end

wnew = wattr(j+1);
wattr, zattr
znew zattr(i+1l);
wattr wnew;
zattr znew;
XX xvec; % preserves the values cf xvec & yvec
%% yvec;
axis([-1.32 1.32 -.6 .5]);
indices l:length(xx); $ (1 234 . . .]
1 1;
gvec length (xx) ;
q indices;
leng length{xx) % initialization of g
plet(xvec,yvec, 'b. ', wattr, zattr, ‘r*’,xline,yline, 'w-'i;hecld
on;
plot(o,s,'w.",u,v,'w.’,e, £,'w.",g,h,’w.’); hcld =£f%;
title{’'Grid field and point chosen on attractor’);pause;clg;
while length(qg) > 1;

% preserves value o©on attractzsy

[ (| I TR TR | BT

axis{[-1.32 1.32 -.6 .5]);
x0 = yy + ones(size(yy})) - 1.4*xx."2;
y0 = .3*xx;
wl = znew + 1 - 1l.4*wnew. Z2;
z0 = .3*wnew;
1f w0 > split
gtemp = find(x0 > split | x0 == split);
else
gtemp = find(x0 < split});
end;
1f length(gtemp) == 0,break;
else g = gtemp;
end
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1= 1 + 1; % counts lterates where ar least
one point matches
gvec = [gvec,length{(g)]:% plot of how # with same binary
seguence
leng = lengthi(qg)
indices = indices(q); % decreases each time through loop
xx = x0(q); % preserves CO next iterate those
marching values cof
vy = yoblig); % x0 and yo
wnew = wQ;
znew = z0;
pause;
rlot(xx, vy, 'g.’.w0,2z0,'w+’,xline,yline, 'w-') ;hold on;
plot(o,s,'w.’ ", u,v,'w.’",e,f,'w.’",g,h,'w."i;

title('Movement of points 1in grid with same binary
seguence’)
pause; clg;hold off;
end
axis([1 2 3 4]);axis;
vec = (1/2)."{{l:1length(gvec))-1);
{ ! ’

ploti({l:length(gvec})-1,qgvec, ‘'r’, (l:length(gvec))-1,gvecil *
vec,‘'k’);
title('Decrease in # of grid points with same binary

sequence vs 1/2°n’)
cause;clg;
% In tils way, we need the index key ‘indices’ to tell ro
which grid point the
% surviving 1lterate corresponds with respect to the criginasi
xvec and yvec.

axis([-1.22 1.22 -.6 .5]);

1

lot(xline,yline, 'w',x,¥v,’'b.",0,s,'w.’,u,v,'w.’,e, f,'w.’,3,n
,'w.’);hold on;
plot (xvec{indices) ,yvec(indices), ‘gx’,wattr, zattr, ‘r*’ . ;hold

on;
title(’'wattr,zattr & grid pt with same binary
sequence’ ) ;pause;

neld of¢;
xnew = xvec(indices});
ynew = yvecl!indices); % now we show a plct of how

wattr,zattr and the point

% that generates the same binary sequence
XNEW, ynew

% walk around the attractor

axis{[-1.32 1.32 -.6 .51);

plot(xline,yline, 'w’,x,vy,'b.’,0,s8,'w.",u,v,‘'w.’,e,f,’w.',3a,h
LWL

hold on;

xnewt = Xnew;

ynewt = yriew;

wattrt = wattr;

zattrt = zattr;
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for n = 1:3

x0t
yit =
wilr
z0t
wattrt
zattre
Xnewr
ynewt

1 -1
1.0 - 1.4*xnewr. "2
.3*xXnewt ;

1.0 - 1l.4*warrcre . "2
.3*wattre;

wit ;

z0¢t;

x0r ;

yot;

+ ynewt;

+ zatLre,

plot ix0t,y0t, ‘gx’,wlr, 20, 'r*";

held off;

¢i'Movement of pt chosen on HA and matching sequence
2. diverge’;
e; plot (x0t,y0t, "ix’,wit,z0t, i*’);
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% function [xmat, ymat] = grdcompd(sp.W,Z)

¥ ONLY DIFF BTWN 3&4 IS THAT 4 WEECDS QUADR, 2 USES WHCLE
RECTANGLE.
¥ This funct-ion takes a point{W,Z'fr-m the guadr and
iterares the point n
% cimes i1n order to ensure the pcint 1s on the Hencn
atmoracrtor(ensuring
* tha- rhe nth irerate 1s in the lefr quadrant). It
iniTiates a grid field
* pased on a certaln spacing, then iterates those grid f:e.2
r-ints thax
* match the binary string of {wneW,Znew. [use (-.,-.2%: Z:zov
~,27. As iong as
= ~he strings match, points are 1terated using the Herncn
ecurrence. Only that
“hose points that completely match are finally plznned
aczzrding to the
= ZI>..cwing scheme:
% ¢ original grid field points
% r* criginal W, Z)
% go iterated field pecints with matching binary s-ring
3T nth iteraticn
% W 1-erated (W,Z) at nth iteration
% gx original xvec,yvec point{s) which matches binarys
string of W,2
fzrmart long
* wWe also show how W,Z and xvec(indices),yvec’indices
“wa.k" to the Henon
¥ atcractor at each iteration {(with the attractor on
screen: .
c=linspacei{-1.33,1.32,500}
3=-.1083*c + .276;
a=linspace(1.32,1.245,500);
r=3.64*u -4.6718;
g=linspacei-1.06,1.245,500)
n=.1533*g -.3344;
e=_.nspace(-1.06,-1.33,500)
£=-3.407*e - 4.1119;
sgiit = .4098;
a [2.4074 1; -.1083 -1; -.1562 1i;
o= [-4.1119; -.2760; -.3344);
- = [-1.32:sp: spllt]
i = [-.6:8p:.5];
1f minf{(a*{w;z]) > b} == 0 | w > split
disp(‘initial value is not in lefr guadr
return;
end
‘x, ¥yl = henreal(750,-1.0,-.25)
xiine = [split split]; yline = [-1.32 1.32];
lenc = lengthi(c); lend = length(d);
xvec = zeros'!l,lenc*lend); yvec = zeros(l,lenc*lend:;
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k=0;
for p = 1l:1lenc
for r = 1l:1lend
k =k + 1;
% This next section puts everything outside of the quad to
{=13,-10)
1f max{(a * [c(p);d{r)]) < b) == 0
xvec (k) = c(p); yvec(k)=d(r);
else
xvec (k) = -10; yvec(k) = -10;
end
end
end
xvec = reshape{xvec,lenc*lend,l);
yvec = reshapel(yvec,lenc*lend,l);
m = find(xvec ~= -10 | yvec ~= -10);
xvec = xvec(m);
yvec = yvec(m);
wattr = w; % This preserves the values of W,Z
zatry = z;
tor 3 = 1:40 %
ensures watrtr, zattr 1is
wattr(y+1l) = 1.0 - 1l.4*wattr(3j)"2 + zattr(j): % on the
attractor
zattr(j+1l) = .3*wattr(3j);
1f § > 20 & wattr(j+1l) < split, break;
end
end
wnew = wattr(j+1);
znew = zattr(j+1);
WatoLr = wnew;
zattr = znew;
XX = XVecC; % preserves the values cf
xvec & yvec
YY = yvec;
axis({-1.32 1.32 -.6 .5}]);
indices = l:length(xx); % [1L 234 . . .]
i=1;
gvec = length(xx);
d = 1indices;
leng = length(xx)
plot{xvec,yvec, 'b.’,wattr, zattr, ‘r*’',xline,yline, ‘w’;;hclid
on;
plot{o,s,'w.’,u.v,'w.’,e, f,'w.’,g,h, 'w.’"); hold off;

ritle(’'Grid field and point chosen on attractor’) ;pause;clg;
while length(qg) > 1;

axis([(-1.32 1.32 ~.6 .5]);
x0 = yy + ones(sizel(yy)) - 1.4*xx."2;
y0 = .3*xx;
w0 = znew + 1 - 1l.4*wnew."2;
z0 = .3*wnew;
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1f wl >= split

qtemp = find(x0 > split | x0 == split);
else
gremp = find(x0 < split);
end;
1f length{gtemp) == 0, break;
else g = gtemp;
end;
1= 1+ 1; % counts 1terates where at least
cne point mat~hes
vec = [gvec,lengthiqg)];% plot of how # with same binary
seguence
leng = lengthiqg)
indices = indices(q!); % decreases each time through lcop
xx = x0(qg); % preserves to next 1terate those
matching values of
vy = y0.3); % x0 and yo0
wnew = w(;
—new = z{;
rause;

piot (xx,vy, ‘'g.’,w0,20, 'w+’,xline,yline, ‘'w’) ;hold on;
pict(oc,s,'w.’",u,v,'w. e, £,'w.’,g, h,'w.");

ritie(’'Mcvement of points in grid with same binary
sequence’) ;
pause; clg; held off;

nd

axisi{{1l 2 3 4]); axis;

vez = (1/2) .7 ((1l:1length(gvec))-1);
plet ((l:length(gvec))-1,qgvec, ‘'r’, (l:length(gvec))-1,gvec(l; ™
vec, ‘b’

title(’'Decrease in # of grid points with same binary
sequence vs 1/2°n’)

pause;clg;

% In this way, we need the index key ‘indices’ to tell to
which grid pocint the

% surviving iterate corresponds with respect to the crig:inal

xvec and yvec.

axis({-1.322 1.32 -.6 .51);
plotixline,yline, 'w’' ,x,y,'b.",0,3,'w.",u,v,'w.",e, £f,'w.",3,n
,'w.");hold on;

plot (xvec(indices),yvec(indices), 'gx’,wattr, zattr, 'r*’'j;
3hold on;

title{’wattr,zattr & grid pt with same binary
seqguence’) ;pause;

nold off;
xnew = xvec(indices);
ynew = yveci{indices); % now we show a plot of how

wattr,zattr and the peint

% that generates the same binary sequence
Xnew, ynew

% walk around the attractor
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axis([-1.32 1.32 -.6 .5]);
clot(x,y, 'b.’,xline,yline, ‘w-',0,s, 'wW.",u,v,'w.",e, f,'w.",g,
h, ‘w.’1; hold on;

xXnewt Xnew;

ynewt = ynew;

wartrt = wattr;

zarcLrt = zattr;

f2rn = 1l:1 -1
xCt = 1.0 - l.4*xnewt.”2 + ynewt;
ylt = .3*xXnewt;
wit = 1.0 - 1.4*wattrt.”2 + zattrt;
-0 .3*wattrt;

wattrt = wlt;

zatecre = z0¢;

xnewt = x0t;

yvnewt = y0t;
plot(x0t,y0t,'gx’,wlt,z0t,’'x*");

itle'Movement of pt chosen on HA and matching sequence pt
until diverge'’;;
pause;plot (x0t,y0t, "ix’,wlt, z0t,"1*"};
end
held <f€f;
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% function [xmat, ymat] = proofl(spcrs,spfn,incr)

% THIS FUNCTION GOES BACK TC **GRDCOMPl** AND USES 1T OVE
MANY SP VALUES.

% This funcrion takes a point(W,Z)from the RT quad,initiates
%$a quad grid field based on a certain spacing, then iterates
%rthose grid field points that match the binary string cf
%:W,Z)[use(.1,.1l) for now. As long as the strings macch,
Fpcints are iterated using the Henon recurrence. Cnly that

¥ . thoselpoints that completely match are finally considered.

8]

w = .5;
z = .1;
split = .4098;
for sp = spfn:incr:spcrs, % MAJOR QUTER LOOF
Sp = Sp
a = [-.1083 -1;-3.64 1;-.1562 1];
b = [-.2760;-4.6718;-.3344;
c = [split:sp:1.32];
d = [-.0:sp:.5];
lenc = lengthic); lend = length(d);
xvec = zerosi{l,lenc*lend); yvec = zeros(l,lenc*lend);
1f min((a*{w;z]) > b) == 0 | w < split
dispi‘initial value 1s not in the right quadr’:
return;
end
X = 0;
for p = 1l:lenc
for r = 1:1lend
k=k+1;
1f max({{a*[c(p);dir}]}' < b) == 0
xvecik) = c{p); yvec(k) = d(r);
else
xvec{k) = -10; yvect(k) = -10;
end
end
end
xvec = reshape(xvec, lenc*lend,1l);
yvec = reshapel(yvec, lenc*lend,1);
m = find(xvec ~= -10 | yvec ~= -10);
xvec = xvec(m); yvec = yvec(m);
®X = xXvec; vy = yvec;
W = w; zz = 2Z;
ndices = l:length(xx); $ (1 2 3 4 ]
1= 1;
gvec = lengthi{xx);
g = indices;
leng = length(xx);
while length(g) > 1;
X7 = yy + ones(sizelyy))-1.4*xx."2;
vy = .3*xx;
wl = zz + 1 - 1.4*ww."2;
z0 = .3*ww;
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1if w0 > split .
gtemp = find(x0 > split | x0 == split); y
else L)
qtemp = find(x0 < split); L
end;
1f length(qtemp) == (,break; &
else @ = qtemp;
end
1 =1+ 1; % counts l1terates where at
least one point matches ®

leng = length(q);

qvec (gvec, length(qg)]l;% plot of how # with same binary
sequence
indices = indices(q}; % decreases each time through lccp

xx = x0(q); % preserves to next lterate those
matching values of L

vy = y0(qg); % x0 and yo0

ww = w0;

zz = z0;
end
% In this way, we need the index key ‘indices’ to tell to
which grid point the L

% surviving 1lterate corresponds with respect to the original

xvec and yvec.

xnew = xvec!{indices);

ynew = yvec({indices); % now we show a plot of how W,Z and
%$the point that generates the same

$binary sequence xnew,ynew walk around the attractor ® o
Xnewt = Xnew;
ynewt = ynew;
wt = wW;
zZt = 2Z;
forn = 1:1 - 1
x0t = 1.0 - l.4*xnewt.”2 + ynewt; o
vyt = .3*xnewt;
wlt = 1.0 - 1.4*wt."2 + zt;
z0t = .3*wt;
wt = wlt;
zt = z0t;
xnewt = x0t; o
ynewt = y0t;
end
nvec = [nvec,n];
spvec = [spvec,spl;
clear xvec;clear yvec;
end % END OF MAJOR LOOF L
axis;

plot (spvec,nvec, ‘'w*’);
title{’SP VS. ITERATIONS UNTIL DIVERGENCE');




% function [xmat, ymat) = proof2(spcrs,spfn, incr)

% THIS FUNCTION GOES BACK TC **GRDCOMP2** AND USES IT OVER
MANY SP VALUES.

% This function takes a (W,Z) from the left guad,initiates a
quad grid field

% based on a certain spacing, then 1iterates those gr.d field
points that

% match the binary string of (W,Z; [use (-1,-.25) for now].
As long as :he

% strings match, points are iterated using the Henon
recurrence. Cnly that

¥ irthose! points that completely match are finally
considered.

w = -1.0;
z = -.25;
splir = .4038;
for sp = spin:incr:spcrs, % MAJOR CUTER LOCPF
sSp = sSp
a = [3.407 1; -.1083 -1; -.15%62 1];
b = [-4.1119; -.2760; -.3344};
c = [-1.32:sp:split}];
d = [-.6:8p:.5]);
lenc = lengthic); lend = length(dj;
xvec = zeros(l,lend*lenc); yvec = zeros{l,lenc*lend);
if min(la*{w;z]) > b) == 0 | w > split
dispt’initial value is not in the left guadr’)
return;
end
k=3;
for p = l:lenc
for r = 1:1end
k=k+l;
1f max((a*[c(p);d(r)]) < b) == 0
xvec (k) = c(p); yvec(k) = d(r);
else
xvec{k) = -10; yvec(k) = -10;
end
erd
end
xvec = reshape(xvec,lenc*lend, l); ¥makes a column vector
yvec = reshape(yvec,lenc*lend,l);
m = find(xvec~= -10 | yvec~= -10j;
xvec = xvecim}; yvec = yvec'm);
®X = Xvec; %% = yvec;
Ww = w; zz = Z;
indices = l:length{xx); %z (123 4 . . .]
1= 1;
gvec = length(xx);
q = indices; % initialization of g
leng = length(xx);

while lengthi(qg) > 1;
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X0 = yy + ones(sizelyy)) - 1.4*xx."2; .
y0 = .3*xx; L 3
wl = 22 + 1 - 1.4*ww."2;
20 = .3*ww;
1f wi > split &
gtemp = find(x0 > split | x0 == split);
else
gtemp = find(x0 < split);
end;
1f lengthi{gtemp) == 0,break;
else g = gtemp;
end
1 =1+ 1;
leng = lengthl(qg);
qvec = [gvec, length{qg)];
indices = indices(q);
xx = x0(3); % preserves to next iterate those
matching values of
vy = y0{(qg); % %0 and yO0
ww = w0;
zz = z0;
end
% In this way, we need the index key ‘indices’ to tell zo
which grid point the
% surviving iterate corresponds with respect to the original
xvec and yvec.
xnew = xvec(indices); ®
ynew = yvec{indices);
Xnewt = Xnew;
ynewt = ynew;
wt = W,
zZt = 2Z;
forn = 1:1 - 1}
x0t = 1.0 - 1l.4*xXnewt.”2 + ynewt;
y0c = .3*xnewt;
wlt = 1.0 - 1.4*wt."2 + zt;
z0t = .3*wt;
wt = w0t ;
zt = z0t;
xnewt = x0t;
ynewt = y0t;
end
nvec = [nvec,n];
spvec = [spvec,sp]l;

clear xvec;clear yvec;

end $ END TO MAJOR OUTER LOOP
plot ispvec,nvec, 'w*’);

title(’SP VvS. ITERATIONS UNTIL DIVERGENCE’);
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% function [xmat, ymat] = proofl(spcrs,spfn, incr)
% THIS FXN USES (W,Z)={-1,-.2%i. ONE ATTR PT IS COMF
OVER MANY SP VALUES

ARED

% ONLY DIFF BTWN 3&4 IS THAT 4 WEEDS QUADR, 3 USES WHCLE
RECTANGLE.
¥ This function takes a pointi(w,Z:from the gquadr and
LTeratss the pcint n
* —i1me3 1 crder to ensure the point 1s on the Henzcn
ATTYACTIY éensuring
% that the nth iterate 1s 1n the left quadrant). Iz
initiates a grid field
* kased cn a certaln spacing, then iterates those grid f:e3d
coints thar
% maTtch the kbinary string of (wnew,znew) [use (-1,-.25. =for
w,2 . As long as
r The 37rings match, pcints are 1terated using the Hencn
recurrence. Inly that
¥ --hcse. poilnts that completely match are finally
TInsidered,
~v". - 5 ;
splic 4T 9%,
WATTY = W % This preserves the values of W,Z
ALY = Z;
fcr o= l:40° %
ensures wattr,zattr 1s
wattriJ+1r = 1.0 - 1 4*wattr(3)"2 + zattri{j); % on the
attractoer
zattriJ+1) = .3*wattr(j};
1f 2+ 20 & wattri(j+l) » split, break;
end
end
wrnew = wat-r’'3+1);
znew = zattr(j+l);
for sp = spin:incr:spcrs, % MAJCR OUTER LOCZF
Sp = Sp
NALLY = wWhnew;
zZantr = znew;
a = [-.12¢2 -1; -3.64 1; -.1562 11;
= {-.2760;-4.6718;-.3344;;
c = [spiit:sp:1.32];
4 = [-.8:3p:.5];
ienz = lengthic); lend = length(d);
xvec = zercsi(l,lenc*lend); yvec = zeros(l,lenc*lend:;
1f min(ta*(w;z}) > by == T | w < split
disp('initial value is not in right quadr’
reTurn;
end
k=0;
for p = 1l:lenc
for r = 1:lend
g7
[ ] [ ] ® @ ® [ ] ®

L)




$ Thils next section puts everything outside of the guad

*
k=k+l,‘ .
Ly

to (-10,-10)
if max({a * [c(p);dir)]}) < b) == 0 L
xvec (k) = c(p); yvecik! = dir);
else ~
xvec (k) = -10; yvec(k) = -1(; ’
end
end
end o
Xxvec = reshape(xvec, lenc*lend,l};
yvec = reshape({yvec, lenc*lend,1l);
m = find(xvec ~= -10 | yvec ~= -10);
Xvec = Xvec{m); yvec = yvec(m);
XX = Xvec; %% = yvec; o
indices = l:length(xx); ¥ (1234 . . .]
1= 1;
gvec = length(xx);
a = 1ndices;
leng = length(xx);
while lengthi{qg) > 1; e
x0 = yy + ones(sizelyy)) - 1l.4*xx."2;
y0 = .3*xx;
wh) = znew + 1 - l.4*wnew."2;
z0 = .3*wnew;
1f w0 >= split
gtemp = find(x0 > split | x0 == split}; L4 ®
else
gtemp = find(x0 < split);
end;
1f length(gtemp) == (0,6 break;
else g = gqtemp;
end; @
1 =1+ 1; % counts iterates where at lieast
one point matches
gvec = [gvec,length(g)]; % plot of how # with same
kinary sequence
leng = length(qg);
indices = indices(q); % decreases each time through locg o
o= xT i) % prezcrres tn next iterate those
matching values of
vy = y0(q); % x0 and y0
wnew = wi;
znew = 20;
end ®
3 In this way, we need the index key ’'indires’ r~ tell o

which grid point the

% surviving iterate corresponds with respect to the or:iginal
xvec and yvec.

xnew = xXvec(indices);
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ynew = yvec(indices); % now we show a plot c¢f how .
watrtr,zattr and the point

% that generates the same binary seguence 8,
Xnew, ynew L
% walk around the attractor
XNewr = XNnew; &
YLewr = Ynew;
wWaTTrT = wattr;
IAaTTIT = zattr;
sy no= 1:1 -1 L
xon o= 1.0 - l.4*Xnews. 2 +~ yrnew";
Yyt o= L3Txnewt;
wiz = 1.0 - 1l.4*wattrn. 2 + zatore;
It = .3*wactrt;
watTre = wit;
zat-rt = z0t; ®
xXnewt = X0U;
vnews = yot;
=nd
nvesz = ‘nvec,nl;
spvec = [spvec,spl;
clear xvec; clear yvec; o
=nd % END TZ MAJIr LIIE
aAM1sz,;
Elot ispvec,nvec, ‘w*'};
“1rlet’SP VS. ITERATIONS UNTIL DIVERGENCE':;




¥ function [xmat, ymat] = proofd(spcrs,spfn, incr)

x THIS FXN USES WwW,2'=(-1,-.25). ONE ATTR PT IS CCMPARELC

IZR MANY SF VALUES
¥ IMLY TIFF BTWN 3&4 I35 THAT 4 WEEDS JUADKR,

(a2
[
192]
m
n
>
o o]
Q
=
{1

47}

h

* Triz funcrnicn rtakes a point W, 2 from the guadr and
LT=eraves t“he ptint n
x F e o ~Arder t5 sive mh ~ A = the Henor
LTes 1noovrder To ensurye the polnt 13 o0 tn nosn
“TLaTnIy € L, LYing
“raT tx  nrh oinerate 13 1n the lef- guadrant It
criTat s oa grad field
x rat=d Zn oa certiain spacing, then iterates these grid ¢
- e m e
= 3T Tho o zmring °f wnew,zrew. [use . -1,-.l°%
Z L3 .Ing as
- 3TrinJT matoh, points are iterated using the Henor
recuyrvente, Inly that
. .
*  Trl3e poLnTs tnat compistely macth are firnally
cirnzidered
W - - .
- — nNT .
- - T e~y
e . 438
Tl -5
WETTY = W % This preserwves the ra.ues -:I W,
~ae =
Zattr = Z;
S R S % ensures wattr,zaT :
e - -~ " I A ~ . -
watTr "+l = 1.7 - l.4*wattr(3) 2 + zattr.c ; % on -~
iemvgme my
I3TTY T+l = LiTwNatTrils;
- RV ‘ 1 2 .
L f ~ 20 & wattriij+l' < splic, break;
aerAd
=
—_ - - AT
W = wWattIr Tl
Inew o= Zattr Cely;
& - A e e oy 3 A Y, e v - - -
b = spfrn:incr:spcrs, ¥ MACTR CTUTER LT .°F
Wi = wnew;
Za = IZnew;
P o a -
= [2.47734 1; -.1C82 -1; -.1%5¢2 11;
, DA bt :
= "4._‘.-‘5,' ‘.2'bt-, - 334%,,‘
= (-1.3Z:sp:spiit];
= f-.6:8¢:.5];
. ; : ‘ s . .
- = lengtmhici; lernd = lengthidi;
- PN N —~ V. v - Bl 1 m o~ - .
= = zeros i,.enc*lend:; YVeT = Zeros:.,lencr.end ;
- / ~ " . S ‘,

3
e
®
th p¢

n'ta*w;zly - k' == 0 ! w
.
t

(1 T )

. \ 1 - 3. - N 1]
isp{’initial wvalue 1s nct 1n 1 guadr
eturn;
end
K=
& . 1
oY p = L:.€enc
for r = l:lend
oo
K=Kk+1;

[
<>
[GB)




% This next section
o -12,-10C;

1f max(ta * |
xvectki =

else
Xvel |

an A
Taid

) ()

Kio= -1

reshape xvec, len
reshape:yves, len
~ = find xver -~= -1:

1

|
0y
3
D
)

e

/

J
ST.1

1T

U]

3
ko]

n

th

D

' -

W
£ O 42

~emp = find
end; )
1f length g-emp
else g = gtTemp;
end;
1= 1o+ 1
ir.e roint matches
T2 = [gvec,lengthf
binary seguence
-erg = lengthiq);
indices indices (gl ;
il

x5 ig

’

ma-ching values of
YYO= Yo qls
WTEW = WU ;
znew = z=0;
=nd
¥ In rthis way, we need
which grid point the
% su
xvez and yvec.

XOew =

xveciindices} ;

73T

{o]

uTts

everyrhi

o

sdiry ]y < by

¢

yvecik) =

yves 'K =

lend, L ;
.end, I
vves ~= -1

[

o0 o

o

the

rriving iterate ccrresponds with
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Xnewt
ynewt
wattrt
zartrt
fcr n o=
xGt
vt
wlt
z0t
wattre
zattrt
Xnewt
ynewt
end
nvec
spvec =

Horonon

ynew = yveci{indices);

[ —

% now we show a plot of howwattr,
% zattr and the point that generates
$the same binary sequence xnew,ynew

% walk around the attractor

Xxnew;
ynew;
wattr;
zater;

1l:

1 -1

1.0 - 1.4*xnewt.”2 + ynewt;
.3*xXnewt;

1.0 - 1.4*wattrt.”2 + zattrt
.3*wattre;

wlt;

z0t;

x0t;

= y0t;

[nvec,nl];
[spvec, sp]l;

ricle(’'Sp VS.

clear xvec; clear yvec;
end
axis;
nlot (spvec,nvec, 'w*');
ITERATIONS UNTIL DIVERGENCE') ;

’

% END TO MAJOR LQOP

'R

‘'t “‘




% function [xmat, ymat] = prfl(spcrs,spfn, incr)
% This function takes thirty-one points (W,2) from the RT
guad, initiates a
% quad grid field based on a certain spacing, then iterar
those grid f:eld
% pcints that match the binary string of (W,Z){use(.1l,.1.
for now. As long as
the strings match, pcints are 1terated using the Henon
currence. Only that
tth ) peoints that comp.etely match are finally
deved.

0;
S:.02:1.1 % MAJOR OUTER LOCF
.1;

11+ 1

.4098;

spfn:incr:spcrs, % MINOR OUTER LOCP

1Y
7]

() w0
G ®
»3 ~

v

rh
)
[a4

[N
[T SRR - R

th 4 QOO WMo

th )
O

La S

E
-.1083 -1;-3.64 1;-.1562 1};
-.2760;-4.6718;-.3344);
plit sp:1.327;
.6:5p:.5};
lerg*h c); lend
zercs(l,lenc*lend!; yvec
min({a*{w;z]) > b) == 0 | w
disp(’initial value 1is not
return;

LT | I | I S [N 1|

Aﬂ_”-ﬁr—.(n

[t
3

(0

lengthid ;
zeros(l, .enc*lend; ;
split

in the right quadr’)

L )
A
1Y

b

AN

rhOA

f maxi(a*{c(p)
xvec(k) = ¢
else
xvec (k) = -10; yveclk) = -10;
end

reshape (xvec, lenc*lend, 1) ;
reshape(yvec, lenc*lend, 1};
find(xvec ~= -10 | yvec ~=
xvec(m); yvec = yvec(m);
xvec; vy = YVec;

w; 22 = I;

-7

-10);

L1 T R 1 S VR | B 1]

-
8]
[oF
-
]
D

(S0

q
v “‘),

ﬂ .
o owoan

l:length(xx); % (123 4 . . .]
length{xx) ;

indices;
length(xx);
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while length(q) > 1;

X0 = yy + ones(sizel(yy)) - 1.4*xx."2;
y0 = .3*xx;
wl = zz + 1 - 1.4*ww."2;
z0 = .3*ww;
if w0 > split
gtemp = find(x0 > split | x0 == split);
else
qtemp = find(x0 < split);
end;
1f lengthi{qtemp) == 0,break;
else g = qtemp;
end
1 =1+ 1; % counts iterates where at
least one point matches
leng = length(q);
gvec = [qvec,length(q)];% plot of how # with same binary
sequence
indices = indices(q); % decreases each time through loop
xx = x0(q); % preserves to next lterate those
matching values of
vy = yo0(q); % x0 and yo0
ww = w(;
zz = z0;

end
% In this way, we need the index key ‘indices’ to tell to
which grid point the
% surviving iterate corresponds with respect to the original
xvec and yvec.
Xxnew = xvec (indices ;
ynew = yvec(indices); % now we show a plot of how W,Z and
the point

% that generates the same binary sequence
xnew, ynew

% walk around the attractor

x»newt = Xnew;
ynewt = ynew;
wt = w;
zt = 2Z;
forn = 1:1 - 1
x0z = 1.0 - l.4*xnewt.”2 + ynewt;
yit = .3*Xnewt;
wlt = 1.0 - 1.4*wt."2 + zt;
z0t = .3*wt;
wt = wlt;
zt = z0t;
xnewt = x0t;
vnewt = y0t;
end
nvecl = [nvecl,n];
spvecl = [spvecl,spl:
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clear xvec;clear yvec;

end ¥ END MINOR

nvec (nvec2,nvecl];
spvec? (spvecl, spvecl];
clear xvec; clear yvec;

LOOP

end % END MAJSOR LOOF

[0 max(spvec2) 0 max(nvecl)]);
cr (spvec2,nvec2, 'w. "'} ;
(*SP VS. ITERATIONS UNTIL DIVERGENCE');
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% function [xmat, ymat] = prf2(spcrs,spfn, incr)

% THIS FUNCTION GOES BACK TO **GRDCOMP2** AND USES IT OVER
MANY SP VALUES.

% (AND OVER THIRTY-ONE W, Z VALUES)

% This function takes a (W,Z) from the left guad,initiares a
gquad grid field

% based on a certain spacing, then iterates those grid field
points that

% match the binary string of (W,Z) {use (-1,-.25; for nowl.
As long as the

% strings match, points are iterated using the Henon
recurrence. Only that

% .those) points that completely match are finally
ccnsidered.

11 = 0;
fcr w o= -.80:.04:.4 % MAJOR CUTER L3OP
z = -.01
i1 = 11 + 1
splic = .40098;
for sp = spfn:incr:spcrs, % MINOR OUTER LOCP
Sp = sp
a = [3.4¢7 1; -.1083 -1; -.1562 11];
b = [-4.1119; -.2760; -.33447};
c = [-1.32:sp:split];
d = [-.6:8p:.5];
lenc = lengthi(c); lend = lengthi(d);
xvec = zeros(l,lend*lenc); yvec = zeros(l,lenc*lend);
1f min{(a*{w;z]} > b) == | w > split
disp(’initial value is not in the left quadr’)
return;
end
k=0;

for p = 1l:lenc
for r = 1:1lend

$makes a column vector

$ [1 234 . . .]

k=k+1;
1f max((a*{c(p);d(r)]) < b)
xvec (k) = c(p); yvec(k)
else
xvec (k) = -10; yvec(k)
end
end
=2nd
xvec = reshape(xvec, lenc*lend,l);
yvec = reshapel(yvec,lenc*lend,l);
m = find(xvec~= -10 | yvec~= -10};
xvec = xvec(m); yvec = yvec(m);
XX = XVecC; vy = yvec;
ww = w; zz = 2;
indices = l:length(xx);
i=1;
gvec = lengthi{xx);
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g = indices; %
initialization of g
leng = lengthi{xx); °
while lengthi{qg) > 1;
x0 vy + ones{sizelyy)) - 1.4*xx.72;
yO0 L3*XX;
w( 2z + 1 - 1.4"ww."2;
z0 3Tww;
if w0 > splitc
gtemp = find{x0 > split | x0 == split); *
else
qtemp = find(x0 < split);
end;
1f lengthi(gtemp) == 0,break;
else g = gtemp;
end L4
1+ 1;
length(q);
[qvec, length(q)]:
indices indices(q) ;
XX x0(q); % preserves to next iterate those
matching values of °
vy yo(q): % x0 and yO0
ww w0 ;
zz z0;

@

oy

1
leng
qvec

[N L T I 1]

oo

end
% In this way, we need the index key ‘indices’ to tell to PY
which grid point the o
¥ surviving iterate corresponds with respect to the original
xvec and yvec.
xXnew xvec (indices) ;
ynew yvec({indices) ;
xnewt Xnew;
ynewt ynew; i
wt W,
zt Z;
for n = 1:1 -1
x0t 1.0 - 1l.4*xnewt .2 + ynewt;
yOt .3*xXnewt;
WOt = 1.0 - 1.4*Wt."2 + zt; ®
z0t L3*wE;
wt wlt;
zt z0t;
xXnewt x0t ;
ynewt yot;
end ®

(U L T T T N |

1IN R T N LA L I TR T

nvecl [nvecl,n];

spvecl = [spvecl,sp]l:
clear xvec;clear yvec; '
end $ END TO MINOR OUTER LCOP




®
*
nvec?2 = [nvec2,nvecl]; .
spvec2 = ([spvec2,spvecl]; .
end % END TO MAJOR OUTER LOOP ®
axis ([0 max(spvec2) 0 max(nvec2)]); i
plot (spvec2,nvec2, ‘w.’);
title{'SP VS. ITERATIONS UNTIL DIVERGENCE'); "
®
[ )
[ ]
® @
®
®
o
®
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% function [xmat, ymat] = prf3(spcrs,spfn,incr)

% THIS FXN USES THIRTY-ONE W,Z VALUES. ONE ATTR PT IS
ZOMPARED OVER MANY SP VALUES

% ONLY DIFF BTWN 3&4 IS THAT 4 USES LEFT QUADR , 3 USES
RIGHT QUADR.

% This function takes a pointS (W,Z) from the guadr and
i1-erates the point n

-imes n crder to ensure the pcint 1s on the Henon
Tractor(ensuring

o0

aroy

% rhat the nth 1terate 1is 1in rthe left quadrant). It
init.ares a grid fieid

%2 based on a certain spacing, then iterates those grid field
points that

% match the binary string of iwnew,znew) [use (-1,-.25) for
w,2!. As long as

% the strings match, points are iterated using the Henon
recurrence. Only that

3 'those! points that ccmpletely match are finally

considered.

for w = .5:.02:1.1 % MAJOR OUTER LOOP
Z=.l;
11 0= 11 + 1
split = .40098;
watty = w; % This preserves the values of W,2Z
zatrr = z;
for 1 = 1:40 % ensures wattr,zattr 1s
wattr{j+l) = 1.0 - 1l.4*wattr(j)”~2 + zattr{j); % on the
attractor
zattris+1l) = .3*wattri(j);
1f j > 20 & wattr(j+1l) > split, break;
end
end
wnew = wattr(j+1l);
znew = zattr{j+l);
fcr sp = spfn:incr:spcrs, % MINOR OUTER LOOP
sp = sSp
wattr = wnew;
zattr = znew;
a = [-.1083 -1; -3.64 1; -.1562 1];
b = [-.2760;-4.6718;-.3344];
¢ = [split:sp:1.32];
d = [-.6:sp:.5]);
lenc = lengthic); lend = length(d);
xvec = zeros(l,lenc*lend); yvec = zeros(l,lenc*lend);
1€ min((a*{w;z}) > b) == 0 | w < split
disp{’initial value is not in right quadr’)
. return;
end
k=0;
fcr p = l:lenc
109
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for r = 1:1lend .
k=k+1;
% This next section puts everything outside of the quad L)
to (-10,-10) L
1f max((a * [c(p):;d(r)}) < b) == 0
xvec(k) = c(p);: yvecik) = d(r); ¥
else
xvec(k}) = -10; yvec(k) = -10;
end
end o
end
xvec = reshape(xvec,lenc*lend,l);
yvec = reshapel{yvec,lenc*lend,l);
m = find(xvec ~= -10 | yvec ~= -10);
Xxvec = xvec(m); yvec = yvec(m);
%X = xvec; vy = yvec; L
indices = l:length(xx); % (1234 . . .]
1= 1;
gvec = length(xx);
o = indices;
leng = length(xx);
while length(q) > 1; o
x0 = yy + ones(sizel(yy)) - 1.4*xx."2;
y0 = .3*xx;
w0l = znew + 1 - 1l.4*wnew."2;
z0 = .3*wnew;
if wO >= split
gtemp = find(x0 > split | x0 == split); ® |
else
gtemp = find(x0 < split);
end;
1f length{gtemp) == 0,break;
else g = qtemp;
end; o
i =1+ 1; % counts iterates where at least
one point matches
gvec = [qgvec,length(q)]:; % plot of how # with same
binary sequence
leng = length(q);
indices = indices(q); % decreases each time through loop ®
xx = x0(q); % preserves to next iterate those
matching values of
vy = v0{(q); % x0 and vyo0
wnew = w0;
znew = z0;
end L
% In this way, we need the index key ’‘indices’ to tell to
which .grid point the
% surviving lterate corresponds with respect to the origina.
xvec and yvec.
Xnew = xvec(indices); °
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b
ynew = yvec(indices); % now we show a plot of how .
wattr, zattr and the point ”
. L))
% that generates the same binary sequence
Xnew, ynew b
% walk around the attractor
Xnewt = Xnew; ~
ynewt = ynew;
watecrt = .rattr;
zattrt = zattr;
focrn = 1:1 - 1 *
x0t = 1.0 - l.4*xnewt. 2 + ynewt;
vit = .3*xXnewt;
wlt = 1.0 - 1l.4*wattrt.”2 + zattrt;
z0t = .3*wattrt;
wattrt = wlt;
zattrt = z0t; ®
xnewt = x0t;
yvnewt = y0t;
end $ END TO MINOR LOCF
nvecl = [nvecl,n];
spvecl = [spvecl,sp]l;
clear xvec; clear yvec; ®
end % END TO MAJOR LOCP
nvec2 = [nvec2,nvecl];
spvec2 = [spvec2,spvecl];
end
axis{ {0 max(sp~w=c2) 0 max{nvecl)]);
plot (spvec2,nvec2,’'.’); o ®
ritle(*SP VS. ITERATIONS UNTIL DIVERGENCE') ;
®
[
o
®
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$ function [xmat, ymat] = prfd(spcrs,spfn,incr)

% THIS FXN USES THIRTY-ONE W,Z VALUES. ONE ATTR PT IS
COMPARED OVER MANY SP VALUES

% ONLY DIFF BTWN 3&4 IS THAT 4 USES THE LEFT QUADR, 3 USES
THE RIGHT QUADR.

This functicn takes thirty pce:nts(W,Z)from the quad and

one

iterates the point n

¥ —imes in order to ensure the point 1s on rthe Hencon
attractoriensuring

¥ that the nth 1terate 1s in the lefr quadrant). It
initiates a grid field

% based on a certain spacing, then iterates those grid fie’d
goints that

% match the binary string cf (wnew,znew) [use (-1,-.25) for
~,Z). As long as

% the strings match, points are iterated using the Hencn
recurrence. Only thart

tthese) points that completely match are finally
censidered.

o

fcr w = -.80:.04:.4 $ MAJOR QUTER LOCP
z = -.01
11 0= 11 + 1
split = .4098;
Wartr = w; % This preserves the alues cf W,2
zattr = 2z;
for 3 = 1:40 % ensures
gwattr, zattr 1s
wattr(Jl+1l) = 1.0 - l.4*wattr(3j)"2 + zattr(j'; % on the
%gartractor
zattr(J+1) = .3*wattr(3j);
1f 3 > 20 & wattrii+1) < split, kreak;
end
end
wnew = wattr(j+l);
znew = zattr(j+1l);
for sp = spfn:incr:spcrs, % MINOR CUTER LOCF
Sp = sp
wattYy = wnew;
Zattr = znew;
a = [3.4074 1; -.1083 -1; -.15%62 1l};
b = [-4.1119; -.2760; -.3344];
c = [-1.32:sp:split];
d = [-.6:sp:.5];
lznc = length(c); lend = length(d);
xvec = zeros(l,lenc*lend); yvec = zeros(l,lenc*iend};
if min((a*{w;z]) > b) == 0 | w > split
disp(’initial value is not in left quadr’)
return;
end
k=0 ;



k=k+1;
% Thls next section puts everything outside cf the quad
to (-10,-10)

1f max({a * [c(p);d{(r)}) < b) == 0
xvec (k) = cip); yvecik) = dir);
else
xvec(k) = -10; yvec(k) = -1(;
end
end
end
xvec = reshape(xvec, lenc*lend,l);
yvec = reshapel(yvec, lenc~*lend,l);
m = find(xvec ~= -10 | yvec ~= -10};
xvec = xvec(m); yvec = yvec(m);
XX = xXvec; Yy = yvec;
indices = l:length(xx); g (1234 . . .]
1= 1;
qvec = length(xx);
q = indices;
leng = length(xx);
while length(g) > 1;
x0 = yy + ones(size(yy)) - 1.4*xx."2;
yO = .3*xx;
w0 = znew + 1 - l.4*wnew."2;
z0 = .3*wnew;
1f w0 >= split
gtemp = find(x0 > split | x0 == split);
else
gtemp = find(x0 < split);
end;
1f length(gtemp) == 0,break;
else g = gtemp;
end;
1 =1+ 1; % counts iterates where at leas-*

one point matches
gvec = [gvec,length(q)]; % plot of how # with same
binary sequence

leng = lengthi(qg);
irdices = indices(q); % decreases each time through locg
xx = x0(q); % preserves to next iterate those
matching values of
vy = y0(q); % x0 and yo0
wnew = w0;
znew = 20;
end

% In this way, we need the index key ‘indices’ to tell to
which grid point the

% surviving iterate corresponds with respect to the original
xvec and yvec.
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xnew = Xvec(indices);
ynew = yveciindices); % now we show a p.ot of how
wattr, zat-r and the point
% that generates the same bilnary seguence
XIlew, ynew
% walk arcund the attractcr
Xnewt = xXnew;
ynewt = ynew;
Wattrt = wattr;
Zatrtyrt = zattr;
for no= l:x - 1
®xit o= 1.0 - l.4*xnewt. 2 + ynewt;
Yor = .3*xXnewt;
wit = 1.0 - l.4*wattrt. 2 + zattrt;
zht = L3T*wattrt;
watzre = wlz;
zattrr = z0t;
xnew. = XUt;
vnewt = y0t;
end
nvecl = [nvecl,n];
spvecl = [spvecl,sp);
clear xvec; clear yvec;
end % END TO MINCER LOC
nvec?2 = [nvecZ,nvecl];
spvec2 = [spvecZ,spvecl];
end % END TO MAJQOR LOCP
axis ! [0 max(spvec2) 0 max{nvec2)]);
plotisgvec2,nvec?, 'w.’');
title(’SF /5. ITERATIONS UNTIL DIVERGENCE’ ;
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¥ ONTO.M

% THIS PRCOGRAM REQUIRES THE PROGRAM HENON T2 RUN FROPERLY
% This program 1s a derivative of a program used original.y
¥ 1n reference 13 called “runs.m*

% This program 1s run using the word-*ontc®

¥ T2 run use "x = henon:s,2,0,i"; then uss “"znto";
% fIzr the appropriate n-tuple sought.

® = henon i SCOCCG,0,0¢0;

ol 4

¥ = »';

x3ec et = zerosid,l);;

tdecwves3 = zercsi8,1l;

decvecd = zeros(le,li;

(tdecyecS = zerssi32,1l;

(1decvecs = zercsie4,1:;

xd=cves” = zZeros: 128,15 ;

r1decvecs = zeros(Z%Se,l);

xaeswvacd = zZeresisll,l);

xdecvecls = zeros(10z24,1);

idecvecll = zercs(2048,1);

tdecveclil = zeros(4096,1);

tdecvecll = zeros(81S82,1);

tdecrecli = zeros!lo384, l),

tdecvesl®S = zeros(32768,1)

tdecvecld = 2eros(65536,l};

sdecvecl”’ = zeros(131072,1);

wni.e minidecvecdi== 0

1= 1 + 1;

$decimal = [2 1] * x(i:1+1)

xdecv e:Z decimal+1l) = decvec2(decimal+l! =+ 1l;
tdecima.=l4 2 1l*xi1:1+2);

$¥decvecl idecimal+l) = decvec3(decimal+l) + 1;
decimal={8 4 2 1]*x(1:1+3
decvecsdidecimal+l) = decvecd (decimal+l) + 1;
tdecimal=(16 8 4 2 1]1*x(1:1+4);
tdecvecSidecimal+l) = decvecS(decimal+l) + 1;
tdecimal='32 16 8 4 2 1)*x(i:1+5);
idecvecé{decimal+l) = decvec6{decimal+l) + 1;
%decimal=[64 32 16 8 4 2 1]*x(1:1+6);
¥decvec7 (decimal+l) = decvec7(decimal+l) + 1;
$decimal=[128 64 32 16 8 4 2 1]1*x(1i:1+7);
%¥decvecs (decimal+1l) = decvec8i(decimal+l) + 1;
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®
$decimal=[256 128 64 32 16 8 4 2 1 ]*x{(1:1+8); ‘
$decvec9 (decimal+l) = decvecS(decimal+l) + 1;
$decimal=[512 256 128 64 32 16 8 4 2 1]*x(i:1+9); ®
$decvecll(decimal+l) = decveclO(decimal+l) + 1;
#decimal=71024 512 256 128 64 32 16 8 4 2 1]*x{(1:1+10);
2decvecll (decimai+l) = decvecllidecimal+l) + 1;
3decimal=02048 1024 512 256 128 64 32 16 8 4 2 1)*xii:1+11); L
$decvecl2 (decimal+l) = decvecl2{decimal+l) + 1;
%$decimal=04096 2048 1024 512 256 128 64 32 16 8 4 2
11*x . 1:1+12);
%2decvecll (decimal+l) = decvecl3(decimal+l) + 1;

]
$v="8192 4096 2048 1024 S12 256 128 64 32 16 8 4 2 1];
$decimal=v*x(1:1+13});
$decvecld (decimal+1l) = decvecld(decimal+l) + 1;
%v=[162384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1);
$decimal= v * x{i:1+14); L
3¥decveclS5{decimal+l) = decveclS5(decimal+l) + 1;
2v={32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4
2 11
3decimal = v * x(1:1+15);
tdecvecl6 (decimal+l) = decveclé6(decimal+l) + 1; ®
%v=[65536 32768 16384 8192 4096 2048 1024 512 256 128 641;
3¥decimal=[v 32 16 8 4 2 1] * x{1:1+16);
$decvecl? /decimal+l) = decvecl7({decimal+1l) + 1;
end ®

n % n-tuple locking for
1 % length of decvec where found L4
lengthi{x) % total length of original vector from Henon




$function xx = £indl1l0(n,x0,y0)

% This program requilres that plot(x110,y110,'.’) be used
$afrer the run. This program takes n points on the attractor
3and finds those that give the sequence 110. It then
31terates the set 3 times. Merely set the parameters below
3and type "findllo".

n = 5000;

x0D = 0;

yGo = 0;

f1lnputs:

% n = length of desired sequence
% x0 = 1initial x

3 yv0 = initial y

foutputs:

% Xx = n by 1 binary vector
hold on;
xil) = x0;
yvil) = y0;
o=linspace(-1.33,1.32,500);
s=-.1083*0 + .276;
u=linspace(1.32,1.245,500);
v=3.64*u - 4.6718;
g=linspace(-1.06,1.245,500);
h=.1533*g - .3344;
e=linspace(-1.06,-1.33,500);
£=-3.407*e - 4.1119;

split = .409§;

axis({-1.32 1.32 -.6 .5));

xline = [split split]; yline = [-1.32 1.32];
plot(xline,yline, 'w-');hold on;

plot(o,s,'w.’,u,v,'w.’,e, f,'w.’,g,h,'w.");
title(’Exclusion Area of Points which Never Give Sequence
11007)

rause;
Xx(2:n) = zeros(n-1,1); % vectors are preallocated
yi{2:n) = zeros(n-1,1);

¥recursive generation of points

for 1 = 1l:n;
X{i+1)
yvii+1l)

yvii) + 1 - 1.4*x(1)"Z2;
.3 0* x(1);

% convert to binary
1if x(1) <= split
Xx{1) = 0;
else

117

im ‘ (o

¥



h

xx{(1) = 1;
end
end
% XX
decvec3 = zeros(8,1);
1 = 0;
while min{decvec3)==0
i:i+l,’
decimal = [4 2 1]*xXxX(1:1+2)";
1f decimal==6, x110
y1ll0

end
end

% plot (x110,y110,.")
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% SUBQUAD

% This program shows how the four sides of the

subquadrilateral

% shift as the sides are iterated 3 times.

any pt.
% falling in the subquad will not give the sequence 110C.

% To

xx = linspace(-1.33,1.32,500)
vy = -.1083*xx + .2760;

aa = linspace{1.32,1.245,500)
bb = 3.64%aa - 4.6718;

2z = linspace(-1.06,1.245,500);
dd = .1533*cc -.3344;

ee = linspace{-1.06,-1.33,500);
£€ = -3.407*ee - 4.1119;

X = linspace(.4099,.5714,500);
y = -.14*x + .2785;

a = linspace(.5714,.5273,500);
o= 1.769*a - .8123;

¢ = linspace(.5273,.4102,500);
d = -.2673*c + .26145;

e = linspace({.4102, .4099,500);
f = -232.7*e =+ 95.6;

split = .4098;

xline = [split split];

yline = [-1.32 1.32];
axis([-1.32 1.32 -.6 .5]);

hold on;plot(xline,yline, ‘g-');
plot (xx,yy,’'g.’,aa,bb,'g.’,cc,dd, 'g."
cuadrilateral
plotix,y,’'w.’,a,b,'w.’,c,d, 'w. ;
title(’ Subquad Quadrilateral and Spllt of 4098°
disp('about to print’)

print;

pause;clg;

hold off

twhile s ~= 0

for iter=1:3

run type "subquad"

sprintf('Iter=%g’,iter)
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for n = 1:500

x0(n) = 1.0 - 1.4*x(n)"2 + yi{(n);
y0(n) = .3*x(n);
end
% 1
for 1 = 1:500
al(i1) = 1.0 - 1.4*a(1)"2 + b(1i);
bO(i) = .3*a(1);
end
% 2
for j = 1:500
0(3) = 1.0 - 1.4*c(3)"2 + d{(3);
dO(J) = .3*c(3);
end
% 3
for k = 1:500
e0(k) = 1.0 - 1.4*e(k)"2 + £(k);
fO0(k) = .3*e(k);
end
% 4
axis([-1.32 1.32 -.6 .5]);
%¥s = s + 1;
$subplot (221);
hold on;plot(xline,yline, ‘g-'); % split
plot (xx,vy,’g.’',aa,bb,’g.’,cc,dd4,'g.’',ee, f£f,’g.’"); %
quadrilateral
plot (x0,y0,'w.’,a0,b0, ‘w.’,c0,d0, 'w.’,e0,£0,'w."); %

iterated subguad

title(’'Iterated Subguad,Quadrilateral and Split of .4098°)
pause;

hold off

$Prepare for next iteration.
x=x0;y=y0;a=a0;b=b0;c=c0;d=d0;e=e0;£=£0;

% 1f s==3
print;clg
end
end;
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APPENDIX B: TYPICAL LEFT QUADRILATERAL RUN
The following is a typical run of GRDCOMP6.M which
models which points from the left quadrilateral give the
same binary sequence as a point (W,2Z) chosen at random from
the left quadrilateral. The point (W,Z) (+) is indicated
with a long arrow; (u,v) points (x) are indicated with

shorter arrows.

Grid Field and Point Chosen on Attractor

-l 03 0 035 1

Figure 55 Typical run left quad model: before iteration
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Movement of Points in Gnd with Sams Binary Sequence

-1 0.5 0 0s L

Pigure 56 Typical run left quad model: Iterate 1

Movement of Points in Grid with Seme Binary Sequence

1 03 0 0s 1

Figure 57 Typical run left quad model: Iterate 2
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®
Movement of Poians ia Grid with Sams Binary Sequence 2)

@
?,

[ J

®

l L . A l . °

1 Y 0 0.5 1
Pigure 58 Typical run left quad model: Iterate 3
°® ]
Movement of Poists in Grid with Same Binary Sequence

®

®

®

-1 Y, [} 0 1
Pigure 59 Typical run left quad model: Iterate 4 o
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\g
Movement of Points in Geid with Sams Binary Sequeacs )

®
| ¥

|

®

L

, . — L

-1 05 0 08 1
Pigure 60 Typical run left quad model: Iterate S
) ®
Movement of Points in Grid with Same Binary Sequence
o
o)
®
®
-1 Y] 0 03 1
Pigure 61 Typical run left quad model: Iterate 6 L
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®
g
Movemeat of Poiags in Grid with Sans Bimary Sequence )]
®
0.ef
¥
02f
-~ ®
ok /7
2k °
!
04
N . N R ®
-1 05 0 05 1
Pigure 62 Typical run left quad model: Iterate 7
° ®
Movement of Points in Grid with Same Sinary Sequence
04
| 4 *
®
®
1 23 0 03 n
FPigure 63 Typical run left quad model: Iterate 8 ®
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Movemunt of Pounts ia Grid with Sams Binary Sequence

S

-1 03 0 0.5

L

Pigure 64 Typical run left quad model: Iterate 9

Movemant of Points in Grid with Sama Binary Sequence

.

-1 0.3 0 03

1

Figure 65 Typical run left quad model: Iterate 10
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350 mmm.uwnmuums-um:mmm"n.n

g 8 8

Pointe with Same Sequence

8

°C)

Iteration
Pigure 66 Grid points with same sequence after
iterations ~

Table 5 shows the count of points for iterates 1 through 10
that give the same binary sequence as (W,Z). At iterate 11
{not shown) there are no grid points that give the same binary

sequence as (W,2).

TABLE 5 NUMBER OF POINTS THAT GIVE THE SAME BINARY SEQUENCE

NUMBER OF POINTS THAT GIVE THE SAME BINARY SEQUENCE

ITERATE 0 1 2 3 4 5 6 7 8 9 10

NO. PTS | 314 | 180 [ 150 | 18 3 3 3 3 3 3 3
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¥.7 snd Grid Poincs vith Same Moary Sequence

-1 0.3 0 0.5 1

Figure 67 (W,Z) and three (u,v) points prior to
iteration :

Movement of Pt Chosen or HA and Maxching Sequence Pt undl Diverge

-l 035 0 03 l

Pigure 68 (W,Z) and three (u,v)’s: Iterate 1

128

g
®
L 3
Ly
®
Fo
®
L
L
[ L
[ ]
®
®
o
®



Movement of Pt Chosen on HA and Masching Sequance Pt unal Divergs

1 Y] 0 0.5 1

Pigure 69 (W,Z) and three (u,v)’s: Iterate 2 (Notice
that the (u,v) points are essentially superimposed) .

Movement of Pt Chosen on HA and Maxching Sequeace Pt unal Diverge

-1 03 0 0s i

Pigure 70 (W,Z) and three (u,v)‘s: Iterate 3 (Notice
that the (u,v) points are essentially superimposed) .
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Movement of Pt Chosen 0a HA and Maxching Sequence Pt ungl Diverge
®
@
L
- — °
-1 03 0 0.5 !
Pigure 71 (W,2Z) and three (u,v)’s: Iterate 4 (Notice
that the (u,v) points are essentially superimposed).
- @
Movement of Pt Chosen on HA and Maxching Sequence Pt undl Diverge
®
o
o
m 23 0 03 N
Pigure 72 (W,Z) and three (u,v)’'s: lterate 5 (Notice
that the (u,v) points are essentially superimposed). ®
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Movement of Px Chosen on HA and Maching Sequence Pt unti) Diverge
®
®
®
. - - ®
1 05 0 0.5 1
Figure 73 (W,Z) and three (u,v)’'s: Iterate 6
®
WNRMQHAMWMRMMW
]
®
o
L 4
! ‘
-1 03 0 0s 1
Figure 74 (W,Z) and three (u,v)'s: Iterate 7 ®
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Movement of Pt Chossn 0a HA 2ad Masching Sequasce Pt andil Divergs

i~

1 25 0 0.3 t

Figure 75 (W,Z) and three (u,v)'s: Iterate 8

Mommdh&uumuwhmhuﬂm

-1 03 0 0.3 3

Pigure 76 (W,Z) and three (u,v) 's: Iterate O

132



-

Movemsat of Pt Qhoeen on HA and Masching Sequeacs Pt unal Diverge

iz

-i 03 0 03 1

FPigure 77 (W,Z) and three (u,v)‘s: Iterate 10
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APPENDIX C: 6 TO 16-TUPLE DATA o
This appendix contains the counts of n-tuples for typical 4
Hénon binary sequences for n-tuples of length 6-16.
®
x 10°
8 °
a 3
6- -
L)
(3]
[
34t .
g ®
5 N P 1 o ™
0 10 20 30 40 30 60 70
Shifted Decimal Equivalent ° (
Figure 78 Incidence of 6-tuples in typical Hénon
generated binary sequence
" ®
x 10
8
06 7
s
S i °
o
~2 B
I 0o

0 20 40 60 80 100 120 140 ®
Shifted Decimal Equivalent

Pigure 79 Incidence of 7-tuples in typical Hénon
generated binary sequence
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(&

o
N
‘xlO‘ \!
®
. ] !
o
]
3. ]
2
= [
1 -
0 Llu_ |
0 50 100 150 200 250 300
Shifted Decimal Equivalent
®
Pigure 80 Incidence of 8-tuples in typical Heénon
generated binary sequence
x10*
4
[ ]
3b -y
9
g
3,
]
2 ° |
1
0
0 100 200 300 400 500 §00
Shifted Decimal Equivalent
o
FPigure 81 Incidence of 9-tuples in typical Hénon
generated binary sequence
x 10*
25 L
2 -
2
g1 ]
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APPENDIX D: AN UNREALIZABLR S-TUPLE

As we saw in Chapter IV, just because a particular n-tuple
is not found in a typical string of length 10° does rnot mean
we will not find it 1in a typical string of length 10" or
longer. The only way to show that an n-tuple is unrealizable
1s to prove it analytically as we have done for the sequence
{1,1,0,0}. It 1s 1in this Appendix that we prove that the
sequence {0,0,0,0,0} is also unrealizable. This specific 5-
tuple is used in Chapter V in order to support a conclusioun as
to why certain sequences are unrealizable.

The sequence {0,0,0,0,0} is one of the four'S-tuples that
appeared to be unrealizable from our da*a in addition to those
5-tuples that included the sequence {1,1,0,0}. These S5-tuples
appear 1n Chapter IV Table 4. Consider the 5S-tuple
{0,0,0,0,0}. Suppose this binary sequence corresponds to the
following sequence of x values: {xX,.,X.,X.. ,X..-,X .:}. All
these x values must, therefore, be at most .4098. Referring
to equation (1.3) on page 10 the possible solutions for x.
correspond to the region beneath the inverted parabola in

Figure 89. Similarly, only those x... and x. terms less than

or equal to .4098 are considered (refer to Figure 90).
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Figure 90 Solution space of points that could give the
sequence {0,0,0,0,0) under x, and x,.. restrictions
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By containing the trapping region in a rectangle (see
Figure °1l) we see how the possible solution values can be

further constrained.

Miniroum Recangis w Encompass TR

0.4p

02+

02F

0.6

o

1 Y] ) 0 N

FPigure 91 Trapping region in minimum area rectangle

The minimum and maximum x values, for example, are -1.32 and
1.33. In order to show that a string of five successive zeros

1s not possible we consider the recurrence:
Xoy = 1 = 1.4%,,,% + .3x,., (D.1)

where x, and x,., are implicit in the equations. To optimize

our potential of finding a value for x,; at most X.,=.4098 we

require a maximum x,, value and a minimum x,,, value. Clearly,

®




X,.. can be no less than -1.32. However, X,., is not limited

only by .4098, as we shall see. Consider the equation:

Xpp = 1 - 1.4x%,,,%2+ .3x,.

To find our desired maximum x,,, value, we must use a minimum

value for x, and a maximum value for x.,,, such that

Xo; $1 - 1.4(.4098)% + .3(-1.32).

This further constrains x,,, to a value no greater than

approximately .3689 (see Figure 92). (The value o0f x,. to

eight decimal places is .36888954).

| 3689

-1 0.5 0 0.5 1
4098

Pigure 92 Solution space of points that could give the
sequence (0,0,0,0,0} under x,,, and x,,, restrictions

-1
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Thus, referring to equation (D.l), the maximum x . value 1s no
more than .3689 and the minimum X. . value 1is -1.32 based on

the confines of the trapping region. It follows thar

x 21 -1.4(.3689) + .3(-1.32)
X... 2 .41348871 (to eight decimal places).
The wvalue of x .. corresponds to a binary value of 1. Thus

{C,0,0,0,0}) 1s not realizable under this symbclic dynamics.
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APPENDIX E: SUBORDINATE PROGRAMS
&
This Appendix 1includes programs which are necessary but )
secondary to the programs in Appendix A. Two of the projrams
AENCN and HENREAL) are essent:al for the proper operati:zn :of
the APPENDIX A programs. o
function [x,y] = henreal(n,x0,y0)
% NOTE: THIS PROGRAM IS REQ’'D TO RUN ALL GRDCOMP PROGRAMS
% This program 1s credited in 1ts entirety to the authcr of
% reference 13;1t has been used by permission.
% program to generate n-length real sequences based or the % ®
% Hénocn
% horseshoe attractor. 1initial points fit into the
% quadrilateral of convergence described in ([Hen76].
%¥1nputs:
3 rn = lengrth cf desired sequence
% x0 = 1initial x value ®
% v( = initial y value
%outputs:
% X = n by 1 real vector
% y = n by 1 real vector
%
X = zeros(n,l); ® )
Yy o= Qerosfn 1);
x{1l} = xG;
vil) = vy0;
¥routine to check if initial points are valid
A=[3.4074 1;-.1083 -1; -3.64 1; -.1562 11;
B=[{-4.1119 -.2760 -4.6718 -.3344)"; PY
1f min((A*[x0; yO]) > B) == 0
disp{’initial point outside convergence zone’]
return ;
end ‘
$recursive generation of points
for 1 = 1:n-1; ®
X(1+1) = y(1) + 1 - 1.4*x(1)"2;
yvii+l) = .3 * x(1);
end

¥ploti(x,y, 'b.’);
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®
% PROBSUBQUAD.M
% PROGRAM REQUIRES HIMMREAL PROGRAM
% This program finds the dynamic probability of a point
falling into the '
% exclusion zone compared tc being on the rest cf the
attractor.
[x,¥y] = henreal(100000,0,0);
a = [232.7 1; -.14 -1; -1.769 1; .2673 1];
b = [35.6 -.29 -.8 .25]'; ®
-3z = zeros(length(x));
for 1 = l:lengthix);
1f min((a*[x(1);y{1)]) > b) == 0 % if ocutside
subguad
z{(1) = 1; *
else z(1) = 0;
end
end
t = find(z==0);
tt = length(t);
g ®
prcbabilityll0 = tt/length(x)
pause;
subplot (2,1,1),plot{x(t),y(t), 'w."’)
|
®
o
[
®
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¥ function [xmat, ymat] = grdcomp5 (sp)

% CNLY DIFF BTWN 4&5 IS THAT 4 CHOOSES W,Z FROM THE LEFT
2UAD THEN ENSURES

% THIS POINT IS ON THE ATTRACTOR, 5 CHOOSES FROM THE RIGHT
JUALD AT RANDOM

% THEN ENSURES THAT THIS POINT IS ON THE ATTRACTOR.

% This function takes a point{W,Z)from the quadr and
iterates the point n

% Times in order to ensure the point is on the Henon
atsractor{ensuring

% -—hat the nth iterate 1s in the left quadrant). It
initiates a grid field

% based on a certaln spacing, then iterates those grid field

¥ match the binary string of (wnew,znew). As long as
~he strings match, points are iterated using the Henon

o

recurrence. Only that

¥ . ~hose) polnts that completely match are finally plotted
according to the

% fcllowing scheme:

% g. original grid field points

% W+ original (W, 2Z)

% gx original xvec,yvec point(s) which matches binary
S

tring of W,2Z

fcrmat long
% We also show how W,Z and xvec(indices),yvec(indices)
"walk" to the Henon
attractor at each iteracion (with the attractor on
reen) .

inspace{-1.33,1.32,500);

.1083*0 + .276;
inspace(1.32,1.245,500);

.64*u -4.6718;
linspace(-1.06,1.245,500);

.1533*g -.3344;
linspace(-1.06,-1.33,500);
-3.407*e - 4.1119;
split .4098;

frix .6314; fply .1894;
fp2x -1.1314; fply -.3393;
[ -.1083 -1;-3.64 1; -.1562 1];
[ -.2760; -4.6718; -.3344];
Lsp‘lt 3p:1.321;
:sp:.5];
¥, Vi henreal (500,-1.0,-.25);
[split split]; yline
length(c) lend
xvec zeros {1, Len'*‘end); yvec

th D 77 Q ©Cwo nee
1] u n n u o0
wr—‘ | w
Howon
non

i uou

m

[-1.32 1.32];
length(d);
zeros(1l,lenc*lend;;

+
[
[N
(@]

[ Tt}
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for r l:lend
k k + 1;
% This next section puts everything outside of the quad to
(-10,-10)
1f max{(a * [c(p);d(r)]) <
xvec({k) = c(p):; yvec(k)
else
xvec(k) = -10; yvec(k) = -10;
end

0

b) =
=d(r);

reshape (xvec, lenc*lend, 1) ;
reshape (yvec, lenc*lend, 1) ;
find(xvec ~= -10 | yvec ~= -10};
xvec (m) ;

yvec (m) ;

3
T TR T

rand*length(xvec) ;
fix(num) + 1;

b
3
Q.
®
x
won

xvec (index) ;
yvec (index) ;
wattr w; % This preserves the values of W,Z
zattr Z;
for 3 1:40 %
ensures wattr, zattr is

wattr(j+1) = 1.0 - 1l.4*wattr(j)"2 + zattr(3j);% on the
ttractor

zattr(Jj+1) = .3*wattr(j);
1f 3 » 20 & wattr(j+1) > split, break;
end

]

end
wnew
znew
watecr
zattr zZnew;

X xvec; % preserves the values of
xvec i yvec

YY = Yyvec;

wattr(j+1);
zattr(j+1);
wnew;

zxis({-1.32 1.32 -.6 .5]);
indices l:length{xx); £ [1 234 . . .]
i 1;
gvec length(xx) ;
q indices;
leng length (xx)
hold on;
plot (xvec,yvec,’g.’,wattr,zattr, ‘w+’,xline,yline, 'w’);

LI | S L | I}

plot(o,s,'w.’,u,v,'w.”,e,f,'w.’,g,h, 'w.’, fplx, fply, ‘o', fp2x,
fp2y, ‘0’ );
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hold off;
title(’'Grid Field and Point Chosen on Attractor');
print;
pause;clg:
while length(q) > 1;
axis{[-1.32 1.32 -.6 .51);
))

x0 = yy + ones(sizelyy - 1.4*xx.72;
y0 = .3*xx;
wl = znew + 1 - 1.4*wnew.”2;
z0 = .3*wnew;
if w0 »>= split
gtemp = find(x0 > split | x0 == split);
else
gtemp = find(x0 < split);
’ end;
1f length(gtemp) == 0, break;
‘ else q = gtemp;
end;
1 =1+ 1; % counts iterates where at least

one point matches
gvec = [gvec,length(qg)];% plot of how # with same binary

sequence
leng = length(q)
indices = indices(q); % decreases each time througn loop
xx = x0(q); % preserves to next iterate those
matching values of
vy = y0(q); % x0 and yo0
wnew = wW(;
znew = z0;
pause;
hold on;

ploti{xx,yvy,'g.’,w0,z0, ‘w+’',xline,yline, 'w’);

plot(o,s, 'w.’',u,v,’'w.’,e,f,’'w.’,g,h,'w.’, fplx, fply, ‘o', fp2x,
fp2y, ‘0o’ ;
title(’'Movement of Points in Grid with Same Binary
Sequence’) ;

print;

pause; clg; hold off;

end
axis ([l 2 3 4]); axis;
vec = (1/72).7((l:length(gvec))-1);

plot{(l:length(gvec))-1,qvec, ‘'r’, (l:length(qgvec))-1,qvec(l)*
vec, 'b’);
title(’'Decrease in # of Grid Points with Same Binary
Sequence vs 1/2°n’)

print;
vause;clg;
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% In this way, we need the index key ’'indices’ to tell to
which grid point the
% surviving lterate corresponds with respect to the original
xvec and yvec.
axis([-1.32 1.32 -.6 .51);
hold on;

plot{xline,yline, 'w’'.x,y,'b.’,0,s,’'wW.",u,v,'w.’,e, f,'w.’,qg,h
,'w.’);hold on;
plot (xvec({indices) ,yvec(indices), ‘gx’,wattr, zattr, ‘w+"');
rlot (fplx, fply, ‘0o’ , fp2x, fp2y,'0’');
title(’'wattr,zattr & Grid Pt with Same Binary Sequence’};
print;
pause;clg;hold oféf;
xnew = xvec(indices);
ynew = yvec({indices); % now we show a plot of how
wattr, zattr and the point
% that generates the same binary seguence
Xnew, ynew
% walk around the attractor

XNnewt = Xnew;
ynewt = ynew;
wattrt = wattr;
zattrt = zattr;
forn = 1:2 -1
x0t = 1.0 - 1.4*xnewt.”2 + ynewt;
y0t = .3*xXnewt;
wlt = 1.0 - 1l.4*wattrt.”2 + zattrt;
z0t = .3*wattrt;
wattrt = wlt;
zattrt = z0¢t;
xnewt = x0t;
ynewt = y0t;
axis([-1.32 1.32 -.6 .51);
hold on;

plot (x,y,'b.’,xline,yline, ‘w-',0,s, ‘'w.’,u,v,'w.’,e, f,'w.’,qg,
h, 'w.’);
plot (fplx, fply, ‘o', fp2x, fp2y, ‘0’ ) ;
plot (x0t,y0t, "‘gx’,wlt, z0t, 'w+");
title('Movement of Pt Chosen on HA and Matching Sequence Pt
until Diverge'’);
print;
pause;clg;
$plot (x0t,y0t, "ix’,wlt, z0t, "1+*);
end
hold off;
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% function [xmat, ymat] = grdcompé6 (sp)

% ONLY DIFF BTWN 4&6 IS THAT 4 USED WATTR,ZATTR S5 CHOOSES AT
RANDOM FROM

% THE LEFT QUADR THEN FINDS WATTR, ZATTR.

% This function takes a point(W,Z)from the quadr and
1terates the point n

% times 1n order to ensure the point is on the Henon
attractor{ensuring

% that the nth iterate is in the left quadrant). It
initiates a grid field

% based on a certain spacing, then iterates those grid field
roints that

% match the binary string of (wnew,znew). As long as

% the strings match, points are iterated using the Henon
recurrence. Only that

% (those) points that completely match are finally plotted
according to the

% following scheme:

% g. original grid field points

% W+ original (W, Z)

% gx original xvec,yvec pocint(s) which matches binary
string of W,2Z

format long
% We also show how W,Z and xvec(indices),yvec(indices)
"walk" to the Henon
% attractor at each iteration (with the attractor on
screen) .
o=linspace{-1.33,1.32,500);
-.1083*0c + [276;
linspace(1.32,1.245,500j;
3.64*u -4.6718;
g=linspace(-1.06,1.245,500);
h=.1533*g -.3344;
e=linspace(-1.06,-1.33,500);
=-3.407*e - 4.1119;

S
u
v

split = .4098;
fplx = .6314; fply = .1894;
fp2x = -1.1314; fp2y = -.3393;
a = [3.4074 1; -.1083 -1; -.1562 1};
b = [-4.1119; -.2760; -.3344)];
c = [~1.32:sp:split];
d = [-.6:8p:.5];
{x, y] = henreal(500,-1.0,-.25);
xline = {split split]; yline = [-1.32 1.32];
lenc = length(c); lend = length(d);
xvec = zeros(l,lenc*lend); yvec = zeros(l,lenc*lend);
k=0;
for p = 1l:lenc
for r = 1:1end
k =k + 1;
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% This next section puts everything outside of the quad to
(-10,-10)

if max({(a * [c(p):;d(xr)]) < b) == 0
xvec (k) = cl(p); yvec(k)=d(r);
else
xvec({k) = -10; yvec(k}) = -10;
end
end
end
xvec = reshape(xvec, lenc=lend,l);
yvec = reshape(yvec, lenc*lend,1l);
m = find(xvec ~= -10 | yvec ~= -10);
xvec = xvec(m);
yvec = yvec(m);
num = rand*lengthi{xvec) ;
index = fix(num) + 1;
w = xXvec (index) ;
z = yvec(index) ;
wattr = w; % This preserves the values cf W,2Z
zattr = z;
for j = 1:40 %
ensures wattr, zattr 1is
wattr{(j+1l) = 1.0 - 1l.4*wattr{(3j)"2 + zattr(j);% on the
attractor
zattr{j+1l) = .3*wattr(j);
if j > 20 & wattr(j+1) < split, break;
end
end
wnew = wattr(j+l);
znew = zattr(j+l);
wattr = wnew;
zattr = znew;
XX = Xvec; % preserves the values of
xvec & yvec
vy = yvec;
axis([-1.32 1.32 -.6 .5]);
indices = 1l:length(xx); % [1 23 4 . . .]
1 =1;
gvec = length(xx);
g = indices;
leng = length({xx)
hold on;

plot (xvec,yvec, 'g.’,wattr, zatty, ‘w+’ ,xline,yline, 'w’);

plot(o,s,'w.’",u,v,'w.",e,f,’w.",g,h,'w.’, fplx, fply, o', fp2x,
fp2y, ‘0’ );

hold off;
title(’Grid Field and Point Chosen on Attractor’);
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print;
pause;clg;
while length(qg) > 1;
axis([-1.32 1.32 -.6 .5]);

x0 = yy + ones(sizel(yy)) - 1.4*xx."2;
y0 = .3*xx;
w0 = znew + 1 - 1.4*wnew. 2;
z0 = .3*wnew;
if w0 »>= split
gtemp = find(x0 > split | x0 == split);
else
gtemp = find(x0 < split);
end;
1f length(gtemp) == 0,break;
else g = gtemp;
end;
1 =1+ 1; % counts iterates where at least
one point matches
gvec = [qvec, length(qg)];% plot of how # with same binary
sequence
leng = length(q)
indices = indices(q); % decreases each time through loop
xx = x0(q); % preserves toO next iterate those
matching values of
vy = y0(qg); % x0 and yo0
wnew = w0;
znew = 20;
pause;
hold on;

plot (xx,vv.,'g.’,w0,z0, ‘'w+’,xline,yline, 'w’);

plot(o,s,'w.’,u,v,’'w.",e,£,'w.”,g,h, ‘w.’, fplx, fply, o', fp2x,
fply, o’ );
title(’'Movement of Points in Grid with Same Binary
Sequence’) ;
print;
pause; clg; hold off;

end
axis({1 2 3 4]1); axis;
vec = (1/2).7{((l:length{gvec))-1);

plot ((l:length(gvec))-1,qvec, ‘'r’, {1:length(gvec))-1,gqvec(l)*

vec, ‘'b’i;
title({’'Decrease in # of Grid Points with Same Binary
Sequence vs 1/2°n’)

print
pause;clg;
% In this way, we need the index key ‘indices’ to tell to
which grid point the
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% surviving iterate corresponds with respect to the coriginal
xvec and yvec.

axis([(-1.32 1.32 -.6 .51);
hold on;

plot (xline,yline, 'w’,x,y,'b.",0,s,'w.",u,v,'w.",e,f,’w.’,g,h
LWL )
plot (xvec(indices),yvec(indices), ‘gx’',wattr, zattr,
plot (fplx, fply, ‘o', fp2x%, fp2y. ‘'O’ ) ;
title(’wattr,zattr & Grid Pt with Same Binary Sequence’);
print;
pause;clg;
hold off;
xnew = xvec (indices);
ynew = yvec(indices); % now we show a plot of how
wattr, zattr and the point
% that generates the same bilnary seguence

’

w+');

Xnew, ynew
% walk around the attractor

Xnewt = Xnew;
ynewt = ynew;
wattrt = wattr;
zattrt = zattr;
forn = 1:1 - 1
x0t = 1.0 - 1l.4*xnewt.”2 + ynewt;
y0t = .3*xnewt;
wlt = 1.0 - 1.4*wattrt.”2 + zattrt;
z0t = .3*wattrt;
wattrt = wOt;
zattrt = z20t;
xnewt = x0t;
ynewt = y0t;
axis([-1.32 1.32 -.6 .51);
hold on;

plot(x,v,'b.’,xline,yline, ‘w-',0,s,'w.’,u,v,'w.',e,f,'w.’,qg,
h, 'w.’);
plot (fplx, fply, 'o’, fp2x, fp2y, ‘0’ };
plot (x0t,y0t, ‘gx’,wlt, z0t, ‘w+');
title('Movement of Pt Chosen on HA and Matching Sequence Pt
until Diverge’);
print;
pause;clg;
plot (x0t,y0t, "ix’',wlt,z0t, "i+');
end
hold off;
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% function {xmat, ymat] = proofS(spcrs, incr,spfn)

% HERE

WE

USE SPCRS TO

IT IS ON THE

% ATTRACTCR
FURTHER SP
% ONLY DIFF BTWN 5&6 IS THAT 6 CHOOSES W,Z FROM THE LEFT

IT IS THEN USED
VALUES

AS

CUADR THEN ENSURES

% THIS PNINT IS5 ON THE ATTRACTOR,

QUADE.

% A NEW WATTR, ZATTR ARE FOUND EACH TIME SP CHANGES.

iterartes the point n

% rimes

in order to ensure the point 1s on the Henon

artractorlensuring
% that the nth 1i1terate is in the left guadrant). It
initiates a grid field

% based on a certain spacing,

pcints

% match the binary string of
% the strings match, points are iterated using the Henon

recurrence. Cnly that
% (those) points that completely match are finally
considered.
spiit = .4098;
Sp = SpCrs;
a = [ -.1083 -1;-3.64 1; -.1562 1];
b = [ -.2760; -4.6718; -.3344)];
¢ = [splitc:sp:1.321;
d = [-.6:8p:.5};
lenc = lengthic); lend = length(d);
xvec = zeros(l,lend*lenc); yvec = zeros{l,lend*lenc);
k=0;
for p = l:lenc
for r = 1:lend
k=k+1;
f maxiia * [cip);dir)l) < b} == 0
xvec (k) = c(p); yvec(k)=d(r);
else
xvec (k) = -10; yvec(k) = -10G;
end
end
end
Xvec = reshape(xvec, lenc*lend,l);
yvec = reshapelyvec,lenc*lend, 1);
m = find(xvec~= -10 | yvec~= -10);
xvec = xvec(m);
yvec = yvec{m);
num = rand*length(xvec);
index = fix(num) + 1;
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W = Xvec(index) ;
z = yvec (index);
wattr = w; % This preserves the values of
W, 2
zattr = z;
for 3 = 1:40
$ensures wattr,zattr 1is
wattr(j+1) = 1.0 - 1l.4*wattr(j)"2 + zattr(j);% on the
attractor
zattr{j+1l) = .3*wattr(3);
1f 3 > 20 & wattr(3+1) > split, break;
end
end
wnew = wattr{j+1l);
znew = zattr(j+l);
for sp = spfn:incr:spcrs, % MAJOR OUTER LOOP
sSp = sSp
a= [ -.1083 -1;-3.64 1; -.1562 1];
b= [ -.2760; -4.6718; -.3344];
c = [split:sp:1.32];
d = [-.6:8p:.5];
lenc = lengthi(c); lend = length(d);
xvec = zeros(l,lend*lenc); yvec = zercs(l,lend*lenc)
k=0;

for p = 1l:lenc
for r = 1:1end

k=k+1;
1f max((a * [c(p):;d(r)]) < bB) == 0
xvec(k) = cip); c(k):d( ) ;
else
xvec (k) = -10; vyvec(k) -10;
end
end
xvec = reshape(xvec,lenc*lend,1);
yvec = reshape(yvec, lenc*lend,1l);
m = find(xvec~= -10 | yvec~= -10);
xvec = xvec(m);
yvec = yvec(m);
wattr = wnew;
zattr = znew;
XX = XvecC; % preserves the values of
xvec & yvec
YY = yvec;
indices = l:lengthi{xx); $ (123 4. . .]
1 = 1;
gvec = length(xx);
g = indices;
lengvec = length(xx);

while length(qg) > 1;

154

Y

&

@




N

@

x0 = yy + ones(sizelyy)) - 1.4*xx."2;
vyl = .3*xx;
wl = znew + 1 - 1.4*wnew."2;
z0 = .3*wnew;
1f w0 >= split
gtemp = find(x0 > split | x0 == split); ~
else
gqtemp = find(x0 < split);
end;
1f lengthi{gtemp!) == 0, break;
else g = gqtemp;
end;
1 = 1 + l;%counts iterates where 2 one point matches
gvec = [gvec,length(qgl];% plot of how # with same binary
sequence
leng = length(g);
indices = indices(q); % decreases each time through loop
xx = x0(q); % preserves to next iterate thcse
matching values of
vy = yv0{q); % x0 and y?0
wnew = wi;
znew = z0;
end
% In this way, we need the index key ‘indices’ to tell to
which grid point the
% surviving iterate corresponds with respect to the origina.l
xvec and yvec.
xnew = xvec/!{indices); o
ynew = yvec (indices);
Xnewr = Xnew;
ynewt = ynew;
wattrt = wattr;
zattrt = zattr;
forn=1:1 -1
x0t = 1.0 - 1.4*xnewt.”2 + ynewt;
y0t = .3*xnewt;
w0t = 1.0 - 1l.4*wattrt.”2 + zattrt;
z0t = .3*wattrt;
wattrt = wit;
zattrt = z0t;
xnewt = x0t;
ynewt = y0t;
end
nvec = [nvec,n];
spvec = [spvec,sp];
clear xvec; clear yvec;
end % END TO MAJOR OUTER LOCF
axis;
clot (spvec,nvec, 'w*’)
title(’SP VS. ITERATIONS UNTIL DIVERGENCE');
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3 function [xmat, ymat] = proof6(spcrs,incr,spfn)

¥ HERE WE USE SPCRS 70 FIND A FCZINT THEN ENSURE IT IS CN THE
ATTQACTCR.

% THIS PCINT IS THEN USED AS A COMPARISON POINT FOR MANY SFE

vemr
JALUES.

% ONLY DIFF BTWN 4&6 IS THAT 4 USED WATTR,ZATTR 6 CHOCSES AT
~ALPVM FROM
THE LEFT QUADR THEN FINDS WATTR ZATTR.

o

¥ Tr.1s tunction takes a point . W,Z/from the quadr and
1-~erares the point n
¥ t—imes in order %o ensure the pcoint 1s on the Henon
at-Tractor iensuring
% ~hat the nth i1terate 1s 1in the left quadrant). It
tniriartes a grad field
% based on a certain spacing, then iterates those grid field
rcints that
X mat ﬁh the binary s:tring of (wnew,znew,. As long as
% :b- strings match, points are lterated using the Henon
recurrence. Only that
% irhecse! points that completely match are finally
considered.
split = .4098;
Sp = SpCcrs;
a = [3.4074 1; -.1083 -1; -.1562 1];
b = {-4.1119; -.276C; -.3344};
c = {-1.32:sp: SpiltJ,
d = [-.6:5p:.5];
lenc = length c); lend = length(d);
xvec = zeros{l,lend*lenc); vyvec = zexros(l,lenc*lend);
k=0 :
fcr g = l:lenc
for r = l:.end
k=k~+1;
1f max({a * [c(p);d(r)]) < b) == 0
xvec (k) = cfp); yvec(k!=d(r);
else
xvec(k) = -10; vec(k) -10;
end
end
end
xveZ = reshape(xvec, lenc*lend,l);
yvec = reshapelyvec, lenc*lend, 1l ;
m = find(xvec~= -10 | yvec~= -10)
xvec = xvec(m);
e = yvecim) ;
num = rand*length(xvec);
index = fixinum} + 1;
w = xvec (index) ;
z = yvec{index);
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watty
zater
for 3

0o

% ensures

w;
z;
1:40
~attr, zattr 1s

% This preserves the values of W,Z

wattriJl+l) = 1.0 - l.4*wattr(3)”"2 + zattri{3l);% on ¢
attractor
zaztriij+l) = .3*wactrij!
1f 1 » 20 & wattr {3,1) < split, break;
end
end
wnew = wattr(J+1);
znew = zattr(j+1l;;
for sp = spfn:incr:spcrs, % MAJOR OQUTER
sp = Sp
a = (3.4074 1; -.1(83 -1; -.1562 1];
b = (-4.1119; - 2760C; -.3344};
c = [-1.32:sp:split];
d = (-.6:8p:.5];
lenc = lengthic) lend = length(d):
xvec = zeros(l,lend*lenc) yvec = zeros(l,lenc*lend};
k=0C;
for p = 1:1enc
for r = 1:1end
k=k+1;
1f max{(a * (c(p);d{r)]) < b == 0
xvec(k) = c{p); yvec(k)=d(r);
else
xvec (k) = -10; yvec(k) -10;
end
end
end
xvec = reshape(xvec,lenc*lend,l);
yvec = reshapelyvec,lenc*lend,l);
m = find(xvec~= -10 | yvec~= -10);
xvec = xvec(m);
yvec = yvec(m);
wattr = wnew;
zattr = znew;
XX = XVecC; % preserves the
values of xvec & yvec
YY = yvec;
indices = l:length(xx); $ (1 2 3 4 .l
1= 1;
gvec = length(xx);
q = indices;
lengvec = length(xx);
while length(g) > 1;
x0 = yy + onesisizelyy)) - 1.4*xx."2;
y0 = .3*xx;
w0l = znew + 1 - 1l.4*wnew."2;
z0 = .3*wnew;
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1f w0 >= split

gtemp = find(x0 > split | x0 == split);
else
grtemp = find{x{ < split);
end;
1f length{gtemp) == 0,break;
else q = Qtemp;
end;
1 =1+ 1; % counts iterates where a-
ieast one point matches
avec = [gvec,length(qg)]; % plot of how # with same binary
sequence
leng = length(q);
indices = indices(q); % decreases each time through loop
xx = x0{(qg); % preserves to next iterate thcse
matching values of
vy = yCi{q); % x0 and yo0
wnew = wo;
znew = z0;
end
%2 In this way, we need the index key ‘indices’ to tell to
which grid point the
% surviving lterate corresponds with respect to the original

xvec and yvec.
xnew = xXvec{indices);
ynew = yvec{indices) ;

Xnewt = xXnew;
ynewt = ynew;
wactrt = wattr;
zattrrt = zattr;
for n = 1:1 - 1
x0t = 1.0 - 1l.4*xnewt.”2 + ynewt;
Yot = .3*Xnewt;
wOt = 1.0 - 1l.4*wattrt.”2 + zattrt;
z0t = .3*wattrt;
wattrt = wlt;
zattrt = z0t;
xnewt = x0t;
ynewt = y0t;
end
nvec = [nvec,n]);
spvec = [spvec,spl;
clear xvec;clear yvec;
end % END TO MAJOR LQOP
axis;
plot (spvec,nvec, 'w* ')
title ('SP VS. ITERATIONS UN1.L DIVERGENCE’);
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function x = henon(n,x0,y0)

% This program 1is credited to .ne author of reference
% has been used by permission.

$funczion x = henonin,xC,y0)

(program to generate n-iength binary sequences based on the
iHénon

ihcorseshoee attractor. 1nitlia: points are checked %against

(o)
o1

o

J 1

)

lateral c¢f convergence. (Hénon 1376}

u

n = length of desired sequence
J = 1nitial x value
0 = initial y value

% X = n by 1 binary vector
%
x'1l = x0;
il = y0;
spilit = .4098; gmedian x-value of henon attractor
trcoutine tu check if initial points are valid
2={3.4074 1;-.1083 -1; -3.64 1; -.1562 1;;
B=l-4.1119 ~.27€0 -4.€718 -.3344]1";
1f min/ A*{x0;vy0]) > By == 0
dispf’initial point outside convergence zone')
return
end
xi2:ni = zeros(n-1,1); ¥vectors are preallocated here tc
%$save time
vi2:n} = zeros(n-1,1); in case initial point is outside
%of zone
zrecursive generation of points
for 2 = 1l:n;
x{1+1l) = y(1) + 1 - 1.4*x(1)"2;
yii+l) = .3 * x(i);

3convert previous point to binary
1f x(1) <= split
x(1) = 0;
else
x{i) = 1;
end
end
$minor housekeeping to dump the last term
x = x(l:n);
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